This tutorial requires a DIALS 3 installation.
Please click here to go to the tutorial for DIALS 2.2.

Processing in Detail

Introduction

DIALS processing may be performed by either running the individual tools (spot finding, indexing, refinement, integration, symmetry, scaling, exporting to MTZ) or you can run xia2 pipeline=dials, which makes informed choices for you at each stage. In this tutorial we will run through each of the steps in turn, checking the output as we go. We will also enforce the correct lattice symmetry.

Tutorial data

The following example uses a Beta-Lactamase dataset collected using beamline I04 at Diamond Light Source, and reprocessed especially for these tutorials.

Hint

If you are physically at Diamond on the CCP4 Workshop, then this data is already available in your training data area. After typing module load ccp4-workshop you’ll be moved to a working folder, with the data already located in the tutorial-data/summed subdirectory.

The data is otherwise available for download from lactamase. We’ll only be using the first run of data in this tutorial, C2sum_1.tar, extracted to a tutorial-data/summed subdirectory.

Import

The first stage of step-by-step DIALS processing is to import the data - all that happens here is that metadata are read for all the images, and a file describing their contents (imported.expt) is written:

dials.import tutorial-data/summed/C2sum_1*.cbf.gz

The output just describes what the software understands of the images it was passed, in this case one sequence of data containing 720 images:

DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

input {
  experiments = <image files>
}

--------------------------------------------------------------------------------
  format: <class 'dxtbx.format.FormatCBFMiniPilatusDLS6MSN100.FormatCBFMiniPilatusDLS6MSN100'>
  num images: 720
  sequences:
    still:    0
    sweep:    1
  num stills: 0
--------------------------------------------------------------------------------
Writing experiments to imported.expt

Now is a good point to take a first look at the data using the dials.image_viewer, both to check that the data is sensible and to anticipate any problems in processing:

dials.image_viewer imported.expt

You will be presented with the main image viewer screen:

https://dials.github.io/images/process_detail_betalactamase/image_viewer.png

Play with the brightness slider (①) a little until you can clearly see the spots on the first image (something in the range 10-20 should make the spots obvious). You can also change the colour scheme (sometimes spots can be easier to identify in ‘inverted’ mode) , toggle various information markers like beam center, and try different configurations for the spot finding (②).

Find Spots

The first “real” task in any processing using DIALS is the spot finding. Since this is looking for spots on every image in the dataset, this process can take some time, so we request multiple processors (nproc=4) to speed this up:

dials.find_spots imported.expt nproc=4

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

spotfinder {
  mp {
    nproc = 4
  }
}
input {
  experiments = imported.expt
}

Setting spotfinder.filter.min_spot_size=3
Configuring spot finder from input parameters
--------------------------------------------------------------------------------
Finding strong spots in imageset 0
--------------------------------------------------------------------------------

Finding spots in image 1 to 720...
Setting chunksize=20
Extracting strong pixels from images
 Using multiprocessing with 4 parallel job(s)

Found 1752 strong pixels on image 1
Found 1536 strong pixels on image 2
Found 1439 strong pixels on image 3
Found 1433 strong pixels on image 4
Found 1695 strong pixels on image 5
Found 1645 strong pixels on image 6
Found 1593 strong pixels on image 7
Found 1663 strong pixels on image 8
Found 1597 strong pixels on image 9
Found 1605 strong pixels on image 10
Found 1452 strong pixels on image 11
Found 1491 strong pixels on image 12
Found 1489 strong pixels on image 13
Found 1562 strong pixels on image 14
Found 1519 strong pixels on image 15
Found 1605 strong pixels on image 16
Found 1429 strong pixels on image 17
Found 1404 strong pixels on image 18
Found 1407 strong pixels on image 19
Found 1411 strong pixels on image 20
Found 1504 strong pixels on image 21
Found 1562 strong pixels on image 22
Found 1368 strong pixels on image 23
Found 1385 strong pixels on image 24
Found 1488 strong pixels on image 25
Found 1518 strong pixels on image 26
Found 1511 strong pixels on image 27
Found 1470 strong pixels on image 28
Found 1435 strong pixels on image 29
Found 1414 strong pixels on image 30
Found 1540 strong pixels on image 31
Found 1591 strong pixels on image 32
Found 1418 strong pixels on image 33
Found 1474 strong pixels on image 34
Found 1438 strong pixels on image 35
Found 1257 strong pixels on image 36
Found 1223 strong pixels on image 37
Found 1357 strong pixels on image 38
Found 1350 strong pixels on image 39
Found 1441 strong pixels on image 40
Found 1393 strong pixels on image 41
Found 1394 strong pixels on image 42
Found 1411 strong pixels on image 43
Found 1366 strong pixels on image 44
Found 1397 strong pixels on image 45
Found 1231 strong pixels on image 46
Found 1304 strong pixels on image 47
Found 1498 strong pixels on image 48
Found 1444 strong pixels on image 49
Found 1452 strong pixels on image 50
Found 1270 strong pixels on image 51
Found 1465 strong pixels on image 52
Found 1431 strong pixels on image 53
Found 1523 strong pixels on image 54
Found 1382 strong pixels on image 55
Found 1285 strong pixels on image 56
Found 1168 strong pixels on image 57
Found 1383 strong pixels on image 58
Found 1298 strong pixels on image 59
Found 1311 strong pixels on image 60
Found 1273 strong pixels on image 61
Found 1333 strong pixels on image 62
Found 1325 strong pixels on image 63
Found 1253 strong pixels on image 64
Found 1353 strong pixels on image 65
Found 1502 strong pixels on image 66
Found 1317 strong pixels on image 67
Found 1399 strong pixels on image 68
Found 1295 strong pixels on image 69
Found 1255 strong pixels on image 70
Found 1488 strong pixels on image 71
Found 1242 strong pixels on image 72
Found 1289 strong pixels on image 73
Found 1320 strong pixels on image 74
Found 1252 strong pixels on image 75
Found 1435 strong pixels on image 76
Found 1411 strong pixels on image 77
Found 1306 strong pixels on image 78
Found 1307 strong pixels on image 79
Found 1380 strong pixels on image 80
Found 1331 strong pixels on image 81
Found 1235 strong pixels on image 82
Found 1385 strong pixels on image 83
Found 1331 strong pixels on image 84
Found 1337 strong pixels on image 85
Found 1456 strong pixels on image 86
Found 1221 strong pixels on image 87
Found 1570 strong pixels on image 88
Found 1388 strong pixels on image 89
Found 1261 strong pixels on image 90
Found 1333 strong pixels on image 91
Found 1458 strong pixels on image 92
Found 1385 strong pixels on image 93
Found 1383 strong pixels on image 94
Found 1282 strong pixels on image 95
Found 1343 strong pixels on image 96
Found 1394 strong pixels on image 97
Found 1500 strong pixels on image 98
Found 1245 strong pixels on image 99
Found 1284 strong pixels on image 100
Found 1355 strong pixels on image 101
Found 1581 strong pixels on image 102
Found 1540 strong pixels on image 103
Found 1410 strong pixels on image 104
Found 1455 strong pixels on image 105
Found 1490 strong pixels on image 106
Found 1393 strong pixels on image 107
Found 1405 strong pixels on image 108
Found 1553 strong pixels on image 109
Found 1391 strong pixels on image 110
Found 1278 strong pixels on image 111
Found 1318 strong pixels on image 112
Found 1702 strong pixels on image 113
Found 1526 strong pixels on image 114
Found 1424 strong pixels on image 115
Found 1278 strong pixels on image 116
Found 1453 strong pixels on image 117
Found 1551 strong pixels on image 118
Found 1440 strong pixels on image 119
Found 1364 strong pixels on image 120
Found 1424 strong pixels on image 121
Found 1467 strong pixels on image 122
Found 1407 strong pixels on image 123
Found 1433 strong pixels on image 124
Found 1417 strong pixels on image 125
Found 1577 strong pixels on image 126
Found 1484 strong pixels on image 127
Found 1325 strong pixels on image 128
Found 1326 strong pixels on image 129
Found 1470 strong pixels on image 130
Found 1467 strong pixels on image 131
Found 1397 strong pixels on image 132
Found 1497 strong pixels on image 133
Found 1394 strong pixels on image 134
Found 1537 strong pixels on image 135
Found 1413 strong pixels on image 136
Found 1596 strong pixels on image 137
Found 1640 strong pixels on image 138
Found 1380 strong pixels on image 139
Found 1332 strong pixels on image 140
Found 1461 strong pixels on image 141
Found 1489 strong pixels on image 142
Found 1448 strong pixels on image 143
Found 1552 strong pixels on image 144
Found 1610 strong pixels on image 145
Found 1420 strong pixels on image 146
Found 1615 strong pixels on image 147
Found 1625 strong pixels on image 148
Found 1617 strong pixels on image 149
Found 1623 strong pixels on image 150
Found 1540 strong pixels on image 151
Found 1506 strong pixels on image 152
Found 1575 strong pixels on image 153
Found 1572 strong pixels on image 154
Found 1643 strong pixels on image 155
Found 1601 strong pixels on image 156
Found 1633 strong pixels on image 157
Found 1715 strong pixels on image 158
Found 1473 strong pixels on image 159
Found 1477 strong pixels on image 160
Found 1436 strong pixels on image 161
Found 1560 strong pixels on image 162
Found 1585 strong pixels on image 163
Found 1617 strong pixels on image 164
Found 1587 strong pixels on image 165
Found 1622 strong pixels on image 166
Found 1475 strong pixels on image 167
Found 1583 strong pixels on image 168
Found 1582 strong pixels on image 169
Found 1455 strong pixels on image 170
Found 1701 strong pixels on image 171
Found 1747 strong pixels on image 172
Found 1529 strong pixels on image 173
Found 1511 strong pixels on image 174
Found 1598 strong pixels on image 175
Found 1603 strong pixels on image 176
Found 1532 strong pixels on image 177
Found 1760 strong pixels on image 178
Found 1542 strong pixels on image 179
Found 1555 strong pixels on image 180
Found 1530 strong pixels on image 181
Found 1589 strong pixels on image 182
Found 1509 strong pixels on image 183
Found 1622 strong pixels on image 184
Found 1632 strong pixels on image 185
Found 1415 strong pixels on image 186
Found 1588 strong pixels on image 187
Found 1437 strong pixels on image 188
Found 1732 strong pixels on image 189
Found 1777 strong pixels on image 190
Found 1673 strong pixels on image 191
Found 1559 strong pixels on image 192
Found 1542 strong pixels on image 193
Found 1474 strong pixels on image 194
Found 1868 strong pixels on image 195
Found 1787 strong pixels on image 196
Found 1705 strong pixels on image 197
Found 1376 strong pixels on image 198
Found 1533 strong pixels on image 199
Found 1680 strong pixels on image 200
Found 1658 strong pixels on image 201
Found 1638 strong pixels on image 202
Found 1633 strong pixels on image 203
Found 1416 strong pixels on image 204
Found 1417 strong pixels on image 205
Found 1638 strong pixels on image 206
Found 1502 strong pixels on image 207
Found 1580 strong pixels on image 208
Found 1807 strong pixels on image 209
Found 1734 strong pixels on image 210
Found 1472 strong pixels on image 211
Found 1501 strong pixels on image 212
Found 1576 strong pixels on image 213
Found 1394 strong pixels on image 214
Found 1633 strong pixels on image 215
Found 1710 strong pixels on image 216
Found 1649 strong pixels on image 217
Found 1551 strong pixels on image 218
Found 1736 strong pixels on image 219
Found 1560 strong pixels on image 220
Found 1770 strong pixels on image 221
Found 1692 strong pixels on image 222
Found 1776 strong pixels on image 223
Found 1626 strong pixels on image 224
Found 1660 strong pixels on image 225
Found 1462 strong pixels on image 226
Found 1628 strong pixels on image 227
Found 1913 strong pixels on image 228
Found 1697 strong pixels on image 229
Found 1708 strong pixels on image 230
Found 1533 strong pixels on image 231
Found 1584 strong pixels on image 232
Found 1668 strong pixels on image 233
Found 1550 strong pixels on image 234
Found 1564 strong pixels on image 235
Found 1564 strong pixels on image 236
Found 1744 strong pixels on image 237
Found 1610 strong pixels on image 238
Found 1649 strong pixels on image 239
Found 1687 strong pixels on image 240
Found 1783 strong pixels on image 241
Found 1696 strong pixels on image 242
Found 1764 strong pixels on image 243
Found 1765 strong pixels on image 244
Found 1538 strong pixels on image 245
Found 1612 strong pixels on image 246
Found 1619 strong pixels on image 247
Found 1763 strong pixels on image 248
Found 1798 strong pixels on image 249
Found 1671 strong pixels on image 250
Found 1613 strong pixels on image 251
Found 1562 strong pixels on image 252
Found 1560 strong pixels on image 253
Found 1712 strong pixels on image 254
Found 1490 strong pixels on image 255
Found 1599 strong pixels on image 256
Found 1805 strong pixels on image 257
Found 1550 strong pixels on image 258
Found 1790 strong pixels on image 259
Found 1740 strong pixels on image 260
Found 1683 strong pixels on image 261
Found 1458 strong pixels on image 262
Found 1535 strong pixels on image 263
Found 1626 strong pixels on image 264
Found 1456 strong pixels on image 265
Found 1697 strong pixels on image 266
Found 1928 strong pixels on image 267
Found 1950 strong pixels on image 268
Found 1674 strong pixels on image 269
Found 1871 strong pixels on image 270
Found 1634 strong pixels on image 271
Found 1641 strong pixels on image 272
Found 1723 strong pixels on image 273
Found 1912 strong pixels on image 274
Found 1903 strong pixels on image 275
Found 1627 strong pixels on image 276
Found 1664 strong pixels on image 277
Found 1614 strong pixels on image 278
Found 1810 strong pixels on image 279
Found 1865 strong pixels on image 280
Found 1717 strong pixels on image 281
Found 1598 strong pixels on image 282
Found 1531 strong pixels on image 283
Found 1644 strong pixels on image 284
Found 1661 strong pixels on image 285
Found 1655 strong pixels on image 286
Found 1664 strong pixels on image 287
Found 1510 strong pixels on image 288
Found 1786 strong pixels on image 289
Found 1731 strong pixels on image 290
Found 1747 strong pixels on image 291
Found 1635 strong pixels on image 292
Found 1694 strong pixels on image 293
Found 1732 strong pixels on image 294
Found 1505 strong pixels on image 295
Found 1574 strong pixels on image 296
Found 1562 strong pixels on image 297
Found 1610 strong pixels on image 298
Found 1799 strong pixels on image 299
Found 1764 strong pixels on image 300
Found 1879 strong pixels on image 301
Found 1574 strong pixels on image 302
Found 1682 strong pixels on image 303
Found 1510 strong pixels on image 304
Found 1493 strong pixels on image 305
Found 1458 strong pixels on image 306
Found 1584 strong pixels on image 307
Found 1659 strong pixels on image 308
Found 1581 strong pixels on image 309
Found 1552 strong pixels on image 310
Found 1575 strong pixels on image 311
Found 1649 strong pixels on image 312
Found 1710 strong pixels on image 313
Found 1644 strong pixels on image 314
Found 1508 strong pixels on image 315
Found 1499 strong pixels on image 316
Found 1568 strong pixels on image 317
Found 1679 strong pixels on image 318
Found 1754 strong pixels on image 319
Found 1475 strong pixels on image 320
Found 1430 strong pixels on image 321
Found 1466 strong pixels on image 322
Found 1459 strong pixels on image 323
Found 1662 strong pixels on image 324
Found 1820 strong pixels on image 325
Found 1646 strong pixels on image 326
Found 1538 strong pixels on image 327
Found 1563 strong pixels on image 328
Found 1464 strong pixels on image 329
Found 1665 strong pixels on image 330
Found 1480 strong pixels on image 331
Found 1348 strong pixels on image 332
Found 1426 strong pixels on image 333
Found 1721 strong pixels on image 334
Found 1210 strong pixels on image 335
Found 1403 strong pixels on image 336
Found 1520 strong pixels on image 337
Found 1381 strong pixels on image 338
Found 1488 strong pixels on image 339
Found 1433 strong pixels on image 340
Found 1488 strong pixels on image 341
Found 1307 strong pixels on image 342
Found 1535 strong pixels on image 343
Found 1379 strong pixels on image 344
Found 1442 strong pixels on image 345
Found 1201 strong pixels on image 346
Found 1409 strong pixels on image 347
Found 1470 strong pixels on image 348
Found 1490 strong pixels on image 349
Found 1298 strong pixels on image 350
Found 1510 strong pixels on image 351
Found 1418 strong pixels on image 352
Found 1354 strong pixels on image 353
Found 1551 strong pixels on image 354
Found 1390 strong pixels on image 355
Found 1388 strong pixels on image 356
Found 1507 strong pixels on image 357
Found 1362 strong pixels on image 358
Found 1205 strong pixels on image 359
Found 1453 strong pixels on image 360
Found 1518 strong pixels on image 361
Found 1546 strong pixels on image 362
Found 1327 strong pixels on image 363
Found 1324 strong pixels on image 364
Found 1545 strong pixels on image 365
Found 1367 strong pixels on image 366
Found 1452 strong pixels on image 367
Found 1688 strong pixels on image 368
Found 1477 strong pixels on image 369
Found 1371 strong pixels on image 370
Found 1226 strong pixels on image 371
Found 1432 strong pixels on image 372
Found 1460 strong pixels on image 373
Found 1371 strong pixels on image 374
Found 1419 strong pixels on image 375
Found 1296 strong pixels on image 376
Found 1349 strong pixels on image 377
Found 1315 strong pixels on image 378
Found 1238 strong pixels on image 379
Found 1297 strong pixels on image 380
Found 1340 strong pixels on image 381
Found 1375 strong pixels on image 382
Found 1252 strong pixels on image 383
Found 1335 strong pixels on image 384
Found 1267 strong pixels on image 385
Found 1427 strong pixels on image 386
Found 1457 strong pixels on image 387
Found 1345 strong pixels on image 388
Found 1423 strong pixels on image 389
Found 1414 strong pixels on image 390
Found 1426 strong pixels on image 391
Found 1354 strong pixels on image 392
Found 1319 strong pixels on image 393
Found 1363 strong pixels on image 394
Found 1287 strong pixels on image 395
Found 1240 strong pixels on image 396
Found 1264 strong pixels on image 397
Found 1253 strong pixels on image 398
Found 1328 strong pixels on image 399
Found 1406 strong pixels on image 400
Found 1258 strong pixels on image 401
Found 1242 strong pixels on image 402
Found 1291 strong pixels on image 403
Found 1466 strong pixels on image 404
Found 1341 strong pixels on image 405
Found 1208 strong pixels on image 406
Found 1290 strong pixels on image 407
Found 1382 strong pixels on image 408
Found 1309 strong pixels on image 409
Found 1344 strong pixels on image 410
Found 1197 strong pixels on image 411
Found 1397 strong pixels on image 412
Found 1384 strong pixels on image 413
Found 1389 strong pixels on image 414
Found 1338 strong pixels on image 415
Found 1219 strong pixels on image 416
Found 1191 strong pixels on image 417
Found 1408 strong pixels on image 418
Found 1234 strong pixels on image 419
Found 1281 strong pixels on image 420
Found 1121 strong pixels on image 421
Found 1319 strong pixels on image 422
Found 1186 strong pixels on image 423
Found 1286 strong pixels on image 424
Found 1259 strong pixels on image 425
Found 1478 strong pixels on image 426
Found 1198 strong pixels on image 427
Found 1248 strong pixels on image 428
Found 1204 strong pixels on image 429
Found 1310 strong pixels on image 430
Found 1458 strong pixels on image 431
Found 1094 strong pixels on image 432
Found 1273 strong pixels on image 433
Found 1319 strong pixels on image 434
Found 1171 strong pixels on image 435
Found 1391 strong pixels on image 436
Found 1262 strong pixels on image 437
Found 1217 strong pixels on image 438
Found 1300 strong pixels on image 439
Found 1340 strong pixels on image 440
Found 1275 strong pixels on image 441
Found 1130 strong pixels on image 442
Found 1337 strong pixels on image 443
Found 1265 strong pixels on image 444
Found 1310 strong pixels on image 445
Found 1293 strong pixels on image 446
Found 1220 strong pixels on image 447
Found 1463 strong pixels on image 448
Found 1299 strong pixels on image 449
Found 1256 strong pixels on image 450
Found 1322 strong pixels on image 451
Found 1375 strong pixels on image 452
Found 1189 strong pixels on image 453
Found 1217 strong pixels on image 454
Found 1321 strong pixels on image 455
Found 1219 strong pixels on image 456
Found 1265 strong pixels on image 457
Found 1311 strong pixels on image 458
Found 1222 strong pixels on image 459
Found 1167 strong pixels on image 460
Found 1268 strong pixels on image 461
Found 1352 strong pixels on image 462
Found 1484 strong pixels on image 463
Found 1277 strong pixels on image 464
Found 1390 strong pixels on image 465
Found 1346 strong pixels on image 466
Found 1264 strong pixels on image 467
Found 1189 strong pixels on image 468
Found 1492 strong pixels on image 469
Found 1276 strong pixels on image 470
Found 1214 strong pixels on image 471
Found 1297 strong pixels on image 472
Found 1489 strong pixels on image 473
Found 1379 strong pixels on image 474
Found 1271 strong pixels on image 475
Found 1240 strong pixels on image 476
Found 1339 strong pixels on image 477
Found 1503 strong pixels on image 478
Found 1299 strong pixels on image 479
Found 1273 strong pixels on image 480
Found 1262 strong pixels on image 481
Found 1307 strong pixels on image 482
Found 1181 strong pixels on image 483
Found 1259 strong pixels on image 484
Found 1271 strong pixels on image 485
Found 1452 strong pixels on image 486
Found 1288 strong pixels on image 487
Found 1135 strong pixels on image 488
Found 1183 strong pixels on image 489
Found 1369 strong pixels on image 490
Found 1335 strong pixels on image 491
Found 1275 strong pixels on image 492
Found 1344 strong pixels on image 493
Found 1315 strong pixels on image 494
Found 1480 strong pixels on image 495
Found 1264 strong pixels on image 496
Found 1371 strong pixels on image 497
Found 1406 strong pixels on image 498
Found 1187 strong pixels on image 499
Found 1155 strong pixels on image 500
Found 1328 strong pixels on image 501
Found 1341 strong pixels on image 502
Found 1369 strong pixels on image 503
Found 1317 strong pixels on image 504
Found 1555 strong pixels on image 505
Found 1259 strong pixels on image 506
Found 1436 strong pixels on image 507
Found 1404 strong pixels on image 508
Found 1358 strong pixels on image 509
Found 1485 strong pixels on image 510
Found 1393 strong pixels on image 511
Found 1323 strong pixels on image 512
Found 1394 strong pixels on image 513
Found 1338 strong pixels on image 514
Found 1454 strong pixels on image 515
Found 1434 strong pixels on image 516
Found 1436 strong pixels on image 517
Found 1493 strong pixels on image 518
Found 1339 strong pixels on image 519
Found 1452 strong pixels on image 520
Found 1332 strong pixels on image 521
Found 1312 strong pixels on image 522
Found 1440 strong pixels on image 523
Found 1317 strong pixels on image 524
Found 1356 strong pixels on image 525
Found 1425 strong pixels on image 526
Found 1277 strong pixels on image 527
Found 1471 strong pixels on image 528
Found 1437 strong pixels on image 529
Found 1229 strong pixels on image 530
Found 1469 strong pixels on image 531
Found 1558 strong pixels on image 532
Found 1292 strong pixels on image 533
Found 1421 strong pixels on image 534
Found 1460 strong pixels on image 535
Found 1440 strong pixels on image 536
Found 1348 strong pixels on image 537
Found 1515 strong pixels on image 538
Found 1464 strong pixels on image 539
Found 1404 strong pixels on image 540
Found 1492 strong pixels on image 541
Found 1420 strong pixels on image 542
Found 1351 strong pixels on image 543
Found 1469 strong pixels on image 544
Found 1415 strong pixels on image 545
Found 1348 strong pixels on image 546
Found 1373 strong pixels on image 547
Found 1294 strong pixels on image 548
Found 1613 strong pixels on image 549
Found 1631 strong pixels on image 550
Found 1579 strong pixels on image 551
Found 1429 strong pixels on image 552
Found 1406 strong pixels on image 553
Found 1348 strong pixels on image 554
Found 1710 strong pixels on image 555
Found 1656 strong pixels on image 556
Found 1562 strong pixels on image 557
Found 1343 strong pixels on image 558
Found 1406 strong pixels on image 559
Found 1570 strong pixels on image 560
Found 1538 strong pixels on image 561
Found 1593 strong pixels on image 562
Found 1456 strong pixels on image 563
Found 1354 strong pixels on image 564
Found 1374 strong pixels on image 565
Found 1558 strong pixels on image 566
Found 1347 strong pixels on image 567
Found 1418 strong pixels on image 568
Found 1722 strong pixels on image 569
Found 1629 strong pixels on image 570
Found 1445 strong pixels on image 571
Found 1419 strong pixels on image 572
Found 1526 strong pixels on image 573
Found 1458 strong pixels on image 574
Found 1736 strong pixels on image 575
Found 1549 strong pixels on image 576
Found 1531 strong pixels on image 577
Found 1376 strong pixels on image 578
Found 1591 strong pixels on image 579
Found 1398 strong pixels on image 580
Found 1842 strong pixels on image 581
Found 1662 strong pixels on image 582
Found 1689 strong pixels on image 583
Found 1657 strong pixels on image 584
Found 1614 strong pixels on image 585
Found 1477 strong pixels on image 586
Found 1617 strong pixels on image 587
Found 1794 strong pixels on image 588
Found 1582 strong pixels on image 589
Found 1678 strong pixels on image 590
Found 1612 strong pixels on image 591
Found 1513 strong pixels on image 592
Found 1750 strong pixels on image 593
Found 1467 strong pixels on image 594
Found 1584 strong pixels on image 595
Found 1534 strong pixels on image 596
Found 1781 strong pixels on image 597
Found 1568 strong pixels on image 598
Found 1618 strong pixels on image 599
Found 1689 strong pixels on image 600
Found 1949 strong pixels on image 601
Found 1701 strong pixels on image 602
Found 1871 strong pixels on image 603
Found 1674 strong pixels on image 604
Found 1530 strong pixels on image 605
Found 1594 strong pixels on image 606
Found 1719 strong pixels on image 607
Found 1719 strong pixels on image 608
Found 1711 strong pixels on image 609
Found 1649 strong pixels on image 610
Found 1580 strong pixels on image 611
Found 1489 strong pixels on image 612
Found 1625 strong pixels on image 613
Found 1740 strong pixels on image 614
Found 1664 strong pixels on image 615
Found 1703 strong pixels on image 616
Found 1838 strong pixels on image 617
Found 1521 strong pixels on image 618
Found 1782 strong pixels on image 619
Found 1678 strong pixels on image 620
Found 1689 strong pixels on image 621
Found 1619 strong pixels on image 622
Found 1640 strong pixels on image 623
Found 1682 strong pixels on image 624
Found 1471 strong pixels on image 625
Found 1713 strong pixels on image 626
Found 1896 strong pixels on image 627
Found 1912 strong pixels on image 628
Found 1795 strong pixels on image 629
Found 1904 strong pixels on image 630
Found 1681 strong pixels on image 631
Found 1732 strong pixels on image 632
Found 1734 strong pixels on image 633
Found 1928 strong pixels on image 634
Found 1937 strong pixels on image 635
Found 1784 strong pixels on image 636
Found 1741 strong pixels on image 637
Found 1730 strong pixels on image 638
Found 1894 strong pixels on image 639
Found 1947 strong pixels on image 640
Found 1916 strong pixels on image 641
Found 1692 strong pixels on image 642
Found 1622 strong pixels on image 643
Found 1676 strong pixels on image 644
Found 1708 strong pixels on image 645
Found 1787 strong pixels on image 646
Found 1727 strong pixels on image 647
Found 1606 strong pixels on image 648
Found 1774 strong pixels on image 649
Found 1699 strong pixels on image 650
Found 1851 strong pixels on image 651
Found 1710 strong pixels on image 652
Found 1742 strong pixels on image 653
Found 1852 strong pixels on image 654
Found 1528 strong pixels on image 655
Found 1671 strong pixels on image 656
Found 1693 strong pixels on image 657
Found 1716 strong pixels on image 658
Found 1760 strong pixels on image 659
Found 1728 strong pixels on image 660
Found 1997 strong pixels on image 661
Found 1597 strong pixels on image 662
Found 1615 strong pixels on image 663
Found 1588 strong pixels on image 664
Found 1609 strong pixels on image 665
Found 1630 strong pixels on image 666
Found 1729 strong pixels on image 667
Found 1730 strong pixels on image 668
Found 1577 strong pixels on image 669
Found 1584 strong pixels on image 670
Found 1621 strong pixels on image 671
Found 1683 strong pixels on image 672
Found 1735 strong pixels on image 673
Found 1605 strong pixels on image 674
Found 1650 strong pixels on image 675
Found 1534 strong pixels on image 676
Found 1572 strong pixels on image 677
Found 1677 strong pixels on image 678
Found 1769 strong pixels on image 679
Found 1594 strong pixels on image 680
Found 1608 strong pixels on image 681
Found 1405 strong pixels on image 682
Found 1559 strong pixels on image 683
Found 1707 strong pixels on image 684
Found 1709 strong pixels on image 685
Found 1645 strong pixels on image 686
Found 1530 strong pixels on image 687
Found 1636 strong pixels on image 688
Found 1550 strong pixels on image 689
Found 1738 strong pixels on image 690
Found 1546 strong pixels on image 691
Found 1504 strong pixels on image 692
Found 1586 strong pixels on image 693
Found 1740 strong pixels on image 694
Found 1423 strong pixels on image 695
Found 1573 strong pixels on image 696
Found 1506 strong pixels on image 697
Found 1434 strong pixels on image 698
Found 1568 strong pixels on image 699
Found 1498 strong pixels on image 700
Found 1629 strong pixels on image 701
Found 1569 strong pixels on image 702
Found 1563 strong pixels on image 703
Found 1447 strong pixels on image 704
Found 1445 strong pixels on image 705
Found 1311 strong pixels on image 706
Found 1513 strong pixels on image 707
Found 1653 strong pixels on image 708
Found 1509 strong pixels on image 709
Found 1476 strong pixels on image 710
Found 1579 strong pixels on image 711
Found 1523 strong pixels on image 712
Found 1563 strong pixels on image 713
Found 1562 strong pixels on image 714
Found 1560 strong pixels on image 715
Found 1512 strong pixels on image 716
Found 1677 strong pixels on image 717
Found 1482 strong pixels on image 718
Found 1204 strong pixels on image 719
Found 1523 strong pixels on image 720

Extracted 124946 spots
Removed 16738 spots with size < 3 pixels
Removed 1 spots with size > 1000 pixels
Calculated 108207 spot centroids
Calculated 108207 spot intensities
Filtered 107999 of 108207 spots by peak-centroid distance

Histogram of per-image spot count for imageset 0:
107999 spots found on 720 images (max 2137 / bin)
*                                                           
***********                 ************                 ***
*********************************************** ************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
1                         image                          720

--------------------------------------------------------------------------------
Saved 107999 reflections to strong.refl

Once this has completed, a new reflection filestrong.refl’ is written, containing a record of every spot found.

The dials.image_viewer tool is not as fast as viewers such as ADXV, however it does integrate well with DIALS data files. Having found strong spots open the image viewer again, but giving it the newly found reflection list:

dials.image_viewer imported.expt strong.refl

Adjust the brightness so that you can see the spots, then zoom in so that you can see the clustered individual pixels of a single spot. Pixels determined to be part of a spot’s peak are marked with green dots. The blue outline shows the three-dimensional shoebox - the extents over detector x, y and image number z of a all peak pixels in a single spot. The single highest value pixel for any spot is marked with a pink circle, and the centre of mass is marked with a red cross.

The spot centre-of-mass is usually close to the peak pixel, but slightly offset as the algorithm allows calculation of the spot centre at a better precision than the pixel size and image angular ‘width’.

https://dials.github.io/images/process_detail_betalactamase/image_viewer_spot.png

The default parameters for spot finding usually do a good job for Pilatus images, such as these. However they may not be optimal for data from other detector types, such as CCDs or image plates. Issues with incorrectly set gain might, for example, lead to background noise being extracted as spots. You can use the image mode buttons (③) to preview how the parameters affect the spot finding algorithm. The final image, ‘threshold’ is the one on which spots were found, so ensuring this produces peaks at real diffraction spot positions will give the best chance of success.

Another very powerful tool for investigating problems with strong spot positions is dials.reciprocal_lattice_viewer. This displays the strong spots in 3D, after mapping them from their detector positions to reciprocal space. In a favourable case you should be able to see the crystal’s reciprocal lattice by eye in the strong spot positions. Some practice may be needed in rotating the lattice to an orientation that shows off the periodicity in reciprocal lattice positions:

dials.reciprocal_lattice_viewer imported.expt strong.refl
../../_images/reciprocal_lattice_strong.png

Although the reciprocal spacing is visible, in this data, there are clearly some systematic distortions. These will be solved in the indexing.

Indexing

The next step will be indexing of the strong spots by dials.index, which by default uses a 3D FFT algorithm (although the 1D FFT algorithm can be selected, using the parameter indexing.method=fft1d). We pass in all the strong spots found in the dataset:

dials.index imported.expt strong.refl

If known, the space group and unit cell can be provided at this stage using the space_group and unit_cell parameters, and will be used to constrain the lattice during refinement, but otherwise indexing and refinement will be carried out in the primitive lattice using space group P1.

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

input {
  experiments = imported.expt
  reflections = strong.refl
}

Found max_cell: 94.4 Angstrom
Setting d_min: 1.84
FFT gridding: (256,256,256)
Number of centroids used: 91203
Candidate solutions:
+----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------+
| unit_cell                        |   volume |   volume score |   #indexed |   % indexed |   % indexed score |   rmsd_xy |   rmsd_xy score |   overall score |
|----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------|
| 40.72 40.73 69.66 92.0 91.9 98.3 |   114154 |           0.01 |      94166 |          99 |              0    |      0.07 |            0    |            0.01 |
| 40.72 40.72 69.70 91.9 91.9 98.2 |   114243 |           0.01 |      94215 |          99 |              0    |      0.07 |            0    |            0.01 |
| 40.60 40.73 69.67 91.9 91.9 98.4 |   113803 |           0    |      93959 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.73 40.76 69.62 92.0 91.9 98.3 |   114214 |           0.01 |      93867 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.72 40.72 69.67 92.0 92.0 98.3 |   114144 |           0.01 |      94275 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.72 40.72 69.63 91.9 92.0 98.2 |   114123 |           0.01 |      93742 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.60 40.71 69.66 91.9 91.9 98.3 |   113784 |           0    |      93870 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.70 40.72 69.66 91.9 92.0 98.2 |   114124 |           0.01 |      94101 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.71 40.73 69.66 91.9 91.9 98.3 |   114140 |           0.01 |      94077 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.72 40.82 69.69 91.8 91.9 98.2 |   114518 |           0.01 |      94017 |          99 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.72 40.77 69.63 92.0 91.9 98.1 |   114292 |           0.01 |      93749 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.69 40.72 69.60 92.0 92.1 98.3 |   113958 |           0    |      93595 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.72 40.72 69.66 91.9 91.9 98.0 |   114230 |           0.01 |      94017 |          99 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.72 40.82 69.64 91.9 91.9 98.2 |   114431 |           0.01 |      93838 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.69 40.72 69.66 91.9 92.1 98.3 |   114065 |           0.01 |      94173 |          99 |              0    |      0.07 |            0.02 |            0.03 |
| 40.72 40.83 69.66 91.9 91.9 98.2 |   114507 |           0.01 |      93960 |          98 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.71 40.72 69.66 91.9 91.9 98.3 |   114109 |           0.01 |      94103 |          99 |              0    |      0.07 |            0.02 |            0.03 |
| 40.72 40.78 69.63 91.9 91.9 98.3 |   114277 |           0.01 |      93862 |          98 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.72 40.73 69.64 92.0 92.0 98.3 |   114113 |           0.01 |      94089 |          99 |              0    |      0.07 |            0.02 |            0.04 |
| 40.72 40.73 69.63 92.0 91.9 98.3 |   114110 |           0.01 |      93890 |          98 |              0.01 |      0.07 |            0.02 |            0.04 |
| 40.70 40.72 69.59 92.0 91.8 98.2 |   114017 |           0.01 |      93302 |          98 |              0.02 |      0.07 |            0.01 |            0.04 |
| 40.60 40.72 69.67 91.9 91.8 98.2 |   113865 |           0    |      93126 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.72 69.66 91.9 91.9 98.2 |   114178 |           0.01 |      94031 |          99 |              0.01 |      0.07 |            0.03 |            0.04 |
| 40.72 40.74 69.66 91.9 91.9 98.1 |   114275 |           0.01 |      94063 |          99 |              0    |      0.07 |            0.03 |            0.04 |
| 40.72 40.73 69.66 92.0 91.9 98.3 |   114151 |           0.01 |      94188 |          99 |              0    |      0.07 |            0.03 |            0.04 |
| 40.60 40.70 69.58 92.1 91.9 98.4 |   113599 |           0    |      93047 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.72 69.67 91.9 91.8 98.2 |   114191 |           0.01 |      93419 |          98 |              0.01 |      0.07 |            0.02 |            0.04 |
| 40.62 40.71 69.66 91.9 91.6 98.3 |   113880 |           0    |      93138 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.83 69.66 91.6 91.9 98.1 |   114543 |           0.01 |      92656 |          97 |              0.03 |      0.07 |            0.01 |            0.04 |
| 40.70 40.72 69.66 91.9 91.9 98.2 |   114150 |           0.01 |      93970 |          98 |              0.01 |      0.07 |            0.03 |            0.04 |
| 40.73 40.74 69.66 91.9 92.1 98.1 |   114266 |           0.01 |      94194 |          99 |              0    |      0.07 |            0.03 |            0.05 |
| 40.72 40.73 69.69 92.0 91.9 98.3 |   114199 |           0.01 |      94373 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.72 40.72 69.65 92.0 91.9 98.3 |   114110 |           0.01 |      94065 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.72 40.82 69.66 91.8 91.9 98.2 |   114470 |           0.01 |      93872 |          98 |              0.01 |      0.07 |            0.03 |            0.05 |
| 40.53 40.72 69.66 91.9 92.0 98.2 |   113637 |           0    |      93709 |          98 |              0.01 |      0.07 |            0.04 |            0.05 |
| 40.67 40.71 69.66 91.9 91.9 98.2 |   114013 |           0.01 |      94057 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.53 40.72 69.66 91.8 92.1 98.2 |   113621 |           0    |      92029 |          96 |              0.04 |      0.07 |            0.02 |            0.06 |
| 40.72 40.83 69.67 91.5 91.9 98.1 |   114555 |           0.01 |      91895 |          96 |              0.04 |      0.07 |            0.01 |            0.06 |
| 40.72 40.93 69.67 91.8 91.9 98.1 |   114816 |           0.02 |      92639 |          97 |              0.03 |      0.07 |            0.02 |            0.06 |
| 40.72 40.72 69.67 91.8 91.9 98.0 |   114242 |           0.01 |      93340 |          98 |              0.02 |      0.07 |            0.03 |            0.06 |
| 40.60 40.77 69.60 92.0 91.7 98.1 |   113913 |           0    |      92296 |          97 |              0.03 |      0.07 |            0.02 |            0.06 |
| 40.64 40.72 69.67 91.9 91.9 98.1 |   113990 |           0    |      93360 |          98 |              0.02 |      0.07 |            0.04 |            0.06 |
| 40.71 40.74 69.66 91.9 91.9 98.2 |   114207 |           0.01 |      94097 |          99 |              0    |      0.08 |            0.05 |            0.06 |
| 40.72 40.82 69.67 91.7 91.9 98.2 |   114482 |           0.01 |      93092 |          98 |              0.02 |      0.07 |            0.03 |            0.07 |
| 40.69 40.72 69.63 91.9 92.0 98.3 |   114024 |           0.01 |      93886 |          98 |              0.01 |      0.08 |            0.05 |            0.07 |
| 40.72 40.82 69.58 91.9 91.9 98.2 |   114325 |           0.01 |      93248 |          98 |              0.02 |      0.07 |            0.04 |            0.07 |
| 40.72 40.73 69.61 92.0 91.9 98.3 |   114060 |           0.01 |      93703 |          98 |              0.01 |      0.08 |            0.06 |            0.08 |
| 40.69 40.72 69.57 91.9 92.1 98.3 |   113906 |           0    |      92940 |          97 |              0.02 |      0.08 |            0.06 |            0.09 |
| 40.72 40.83 69.50 91.7 92.0 98.1 |   114265 |           0.01 |      91089 |          95 |              0.05 |      0.07 |            0.04 |            0.1  |
| 40.72 40.72 69.63 91.9 91.9 98.2 |   114137 |           0.01 |      93712 |          98 |              0.01 |      0.08 |            0.14 |            0.16 |
+----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------+
Using d_min_step 0.1

Indexed crystal models:
model 1 (94166 reflections):
Crystal:
    Unit cell: 40.717, 40.730, 69.663, 91.978, 91.906, 98.339
    Space group: P 1
    U matrix:  {{ 0.8417,  0.5364,  0.0626},
                {-0.1836,  0.1751,  0.9673},
                { 0.5079, -0.8256,  0.2459}}
    B matrix:  {{ 0.0246,  0.0000,  0.0000},
                { 0.0036,  0.0248,  0.0000},
                { 0.0010,  0.0010,  0.0144}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0029,  0.0053,  0.0139},
                { 0.0097, -0.0202,  0.0035}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |       94166 |          1262 | 98.7%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 1)
################################################################################


Summary statistics for 93816 observations matched to predictions:
+-------------------+--------+----------+---------+----------+-------+
|                   |    Min |       Q1 |     Med |       Q3 |   Max |
|-------------------+--------+----------+---------+----------+-------|
| Xc - Xo (mm)      | -1.681 |  -0.4675 | -0.2047 |   0.3707 | 1.383 |
| Yc - Yo (mm)      | -1.731 |  -0.6009 | -0.2953 | -0.00193 | 2.226 |
| Phic - Phio (deg) | -1.707 | -0.08649 | 0.01357 |   0.1076 | 2.149 |
| X weights         |  226.7 |      388 |   398.7 |    403.7 | 405.6 |
| Y weights         |  211.5 |    373.8 |   393.2 |    402.4 | 405.6 |
| Phi weights       |  39.33 |    47.93 |      48 |       48 |    48 |
+-------------------+--------+----------+---------+----------+-------+

Detecting centroid outliers using the Tukey algorithm
3106 reflections have been flagged as outliers
90710 reflections remain in the manager

Summary statistics for 90710 observations matched to predictions:
+-------------------+--------+----------+---------+----------+--------+
|                   |    Min |       Q1 |     Med |       Q3 |    Max |
|-------------------+--------+----------+---------+----------+--------|
| Xc - Xo (mm)      | -1.681 |  -0.4729 | -0.2157 |   0.3737 |  1.383 |
| Yc - Yo (mm)      | -1.583 |  -0.6121 | -0.3087 | -0.03742 |  1.006 |
| Phic - Phio (deg) | -0.423 | -0.08685 | 0.01122 |   0.1031 | 0.4516 |
| X weights         |  226.7 |    388.5 |   398.9 |    403.7 |  405.6 |
| Y weights         |  211.5 |    374.3 |   393.6 |    402.6 |  405.6 |
| Phi weights       |  39.33 |    47.94 |      48 |       48 |     48 |
+-------------------+--------+----------+---------+----------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.56197  | 0.55131  |    0.13413 |
|      1 |  36000 | 0.24338  | 0.26503  |    0.15575 |
|      2 |  36000 | 0.10648  | 0.13198  |    0.13476 |
|      3 |  36000 | 0.055785 | 0.059567 |    0.10888 |
|      4 |  36000 | 0.051066 | 0.052336 |    0.10514 |
|      5 |  36000 | 0.050906 | 0.052372 |    0.10505 |
|      6 |  36000 | 0.050901 | 0.052378 |    0.10505 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.29594 |  0.30452 |     0.2101 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (93847 reflections):
Crystal:
    Unit cell: 40.5519(7), 40.5591(7), 69.2964(13), 92.0155(4), 91.9752(4), 98.0783(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1750,  0.9672},
                { 0.5056, -0.8270,  0.2459}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |       93847 |          1286 | 98.6%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.71 Angstrom

Indexed crystal models:
model 1 (101813 reflections):
Crystal:
    Unit cell: 40.5519(7), 40.5591(7), 69.2964(13), 92.0155(4), 91.9752(4), 98.0783(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1750,  0.9672},
                { 0.5056, -0.8270,  0.2459}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      102009 |           413 | 99.6%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 2)
################################################################################


Summary statistics for 101460 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.3659 | -0.03707 |  -0.002529 | 0.03158 | 0.3623 |
| Yc - Yo (mm)      | -0.8234 | -0.03127 | -0.0002209 | 0.03123 | 0.9301 |
| Phic - Phio (deg) | -0.8541 |  -0.0814 |  0.0005383 | 0.08299 |  1.311 |
| X weights         |   226.7 |    384.8 |      397.6 |   403.4 |  405.6 |
| Y weights         |   173.8 |    369.2 |        391 |   401.9 |  405.6 |
| Phi weights       |   39.33 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
4886 reflections have been flagged as outliers
96574 reflections remain in the manager

Summary statistics for 96574 observations matched to predictions:
+-------------------+---------+----------+-----------+---------+--------+
|                   |     Min |       Q1 |       Med |      Q3 |    Max |
|-------------------+---------+----------+-----------+---------+--------|
| Xc - Xo (mm)      | -0.1672 | -0.03646 | -0.002887 | 0.03019 |  0.159 |
| Yc - Yo (mm)      | -0.1632 | -0.03001 | -0.000363 | 0.02939 | 0.1893 |
| Phic - Phio (deg) | -0.3509 | -0.08067 | 0.0001275 | 0.08135 | 0.3266 |
| X weights         |   226.7 |    386.4 |     398.2 |   403.6 |  405.6 |
| Y weights         |   211.5 |    371.9 |     392.3 |   402.2 |  405.6 |
| Phi weights       |   40.76 |    47.94 |        48 |      48 |     48 |
+-------------------+---------+----------+-----------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.048834 | 0.046981 |    0.10531 |
|      1 |  36000 | 0.048722 | 0.046957 |    0.10525 |
|      2 |  36000 | 0.048696 | 0.04698  |    0.10522 |
|      3 |  36000 | 0.048684 | 0.046993 |    0.1052  |
|      4 |  36000 | 0.048681 | 0.046997 |    0.1052  |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28303 |  0.27324 |     0.2104 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (101813 reflections):
Crystal:
    Unit cell: 40.5520(6), 40.5588(6), 69.2953(10), 92.0189(4), 91.9731(4), 98.0772(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      101813 |           609 | 99.4%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.57 Angstrom

Indexed crystal models:
model 1 (105712 reflections):
Crystal:
    Unit cell: 40.5520(6), 40.5588(6), 69.2953(10), 92.0189(4), 91.9731(4), 98.0772(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      105724 |           686 | 99.4%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 3)
################################################################################


Summary statistics for 105342 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.3602 | -0.03583 | -0.0009226 | 0.03338 | 0.3599 |
| Yc - Yo (mm)      |  -1.133 | -0.03272 | -0.0005848 | 0.03157 |  1.468 |
| Phic - Phio (deg) |  -0.988 | -0.08148 |   0.001034 | 0.08422 |  1.291 |
| X weights         |   210.9 |    382.8 |      397.1 |   403.3 |  405.6 |
| Y weights         |   173.8 |    366.4 |      389.9 |   401.7 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5469 reflections have been flagged as outliers
99873 reflections remain in the manager

Summary statistics for 99873 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1752 | -0.03485 |   -0.00104 | 0.03209 | 0.1659 |
| Yc - Yo (mm)      | -0.1713 | -0.03096 | -0.0005444 | 0.02996 |  0.198 |
| Phic - Phio (deg) | -0.3535 | -0.08055 |  0.0006649 | 0.08254 | 0.3272 |
| X weights         |   210.9 |    384.7 |      397.7 |   403.4 |  405.6 |
| Y weights         |   211.5 |    369.5 |      391.3 |     402 |  405.6 |
| Phi weights       |   39.29 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049172 | 0.04859  |    0.10641 |
|      1 |  36000 | 0.049153 | 0.04854  |    0.10638 |
|      2 |  36000 | 0.049152 | 0.048515 |    0.10639 |
|      3 |  36000 | 0.049155 | 0.048503 |    0.1064  |
|      4 |  36000 | 0.049156 | 0.0485   |    0.1064  |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28579 |  0.28197 |    0.21281 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (105712 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5583(5), 69.2938(9), 92.0190(3), 91.9725(3), 98.0761(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      105712 |           699 | 99.3%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.43 Angstrom

Indexed crystal models:
model 1 (107089 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5583(5), 69.2938(9), 92.0190(3), 91.9725(3), 98.0761(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107097 |           723 | 99.3%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 4)
################################################################################


Summary statistics for 106715 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.939 |   -0.036 | -0.0006477 | 0.03379 | 0.3619 |
| Yc - Yo (mm)      |  -1.114 | -0.03302 | -0.0004506 | 0.03208 |  1.479 |
| Phic - Phio (deg) | -0.9716 | -0.08205 |  0.0008108 | 0.08438 |  1.301 |
| X weights         |     194 |      382 |      396.8 |   403.2 |  405.6 |
| Y weights         |   173.5 |    365.2 |      389.4 |   401.6 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5604 reflections have been flagged as outliers
101111 reflections remain in the manager

Summary statistics for 101111 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1747 | -0.03501 | -0.0007897 | 0.03243 | 0.1648 |
| Yc - Yo (mm)      | -0.1716 | -0.03118 | -0.0004102 | 0.03034 | 0.1979 |
| Phic - Phio (deg) | -0.3525 | -0.08096 |  0.0004804 | 0.08264 | 0.3495 |
| X weights         |   210.9 |      384 |      397.6 |   403.4 |  405.6 |
| Y weights         |   191.7 |    368.6 |      390.9 |   401.9 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049499 | 0.048536 |    0.1067  |
|      1 |  36000 | 0.049483 | 0.048491 |    0.10673 |
|      2 |  36000 | 0.049474 | 0.048479 |    0.10676 |
|      3 |  36000 | 0.049473 | 0.048472 |    0.10677 |
|      4 |  36000 | 0.049473 | 0.04847  |    0.10677 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28764 |   0.2818 |    0.21355 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (107089 reflections):
Crystal:
    Unit cell: 40.5513(5), 40.5578(5), 69.2911(8), 92.0192(3), 91.9728(3), 98.0758(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107089 |           731 | 99.3%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.29 Angstrom

Indexed crystal models:
model 1 (107264 reflections):
Crystal:
    Unit cell: 40.5513(5), 40.5578(5), 69.2911(8), 92.0192(3), 91.9728(3), 98.0758(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107277 |           720 | 99.3%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 5)
################################################################################


Summary statistics for 106891 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.937 | -0.03563 | -0.0001711 | 0.03425 | 0.3641 |
| Yc - Yo (mm)      |  -1.104 | -0.03295 | -0.0004634 |  0.0322 |  1.517 |
| Phic - Phio (deg) | -0.9614 | -0.08213 |  0.0006723 | 0.08443 |  1.308 |
| X weights         |     194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |   143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5626 reflections have been flagged as outliers
101265 reflections remain in the manager

Summary statistics for 101265 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1732 |  -0.0347 | -0.0003111 | 0.03288 | 0.1637 |
| Yc - Yo (mm)      | -0.1724 | -0.03122 | -0.0004946 | 0.03034 |  0.201 |
| Phic - Phio (deg) | -0.3539 | -0.08118 |  0.0003692 | 0.08282 | 0.3509 |
| X weights         |   210.9 |    383.9 |      397.5 |   403.4 |  405.6 |
| Y weights         |   143.8 |    368.4 |      390.9 |   401.9 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049518 | 0.04852  |    0.10693 |
|      1 |  36000 | 0.049498 | 0.048528 |    0.10688 |
|      2 |  36000 | 0.049495 | 0.048535 |    0.10686 |
|      3 |  36000 | 0.049494 | 0.048537 |    0.10686 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28776 |  0.28219 |    0.21371 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (107264 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5585(5), 69.2922(8), 92.0198(3), 91.9722(3), 98.0759(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107264 |           733 | 99.3%       |
+------------+-------------+---------------+-------------+
Saving refined experiments to indexed.expt
Saving refined reflections to indexed.refl

If successful, dials.index writes two output data files - an indexed.expt containing the tuned experimental model and determined parameters, and a indexed.refl reflection file, including index data from the best fit.

It is worth reading through this output to understand what the indexing program has done. Note that this log is automatically captured in the file dials.index.log. A more verbose debug log can be generated by adding the ‘-v’ option to a dials command line program, but this is probably only helpful if something has gone wrong and you are trying to track down why.

Inspecting the beginning of the log shows that the indexing step is done at a resolution lower than the full dataset; 1.84 Å:

 9
10
11
Found max_cell: 94.4 Angstrom
Setting d_min: 1.84
FFT gridding: (256,256,256)

The resolution limit of data that can be used in indexing is determined by the size of the 3D FFT grid, and the likely maximum cell dimension. Here we used the default 256³ grid points. These are used to make an initial estimate for the unit cell parameters.

What then follows are ‘macro-cycles’ of refinement where the experimental model is first tuned to get the best possible fit from the data, and then the resolution limit is reduced to cover more data than the previous cycle. 16 parameters of the diffraction geometry are tuned - 6 for the detector, one for beam angle, 3 crystal orientation angles and the 6 triclinic cell parameters. At each stage only 36000 reflections are used in the refinement job. In order to save time, a subset of the input reflections are used - by default using 100 reflections for every degree of the 360° scan.

We see that the first macrocycle of refinement makes a big improvement in the positional RMSDs:

126
127
128
129
130
131
132
133
134
135
136
137
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.56197  | 0.55131  |    0.13413 |
|      1 |  36000 | 0.24338  | 0.26503  |    0.15575 |
|      2 |  36000 | 0.10648  | 0.13198  |    0.13476 |
|      3 |  36000 | 0.055785 | 0.059567 |    0.10888 |
|      4 |  36000 | 0.051066 | 0.052336 |    0.10514 |
|      5 |  36000 | 0.050906 | 0.052372 |    0.10505 |
|      6 |  36000 | 0.050901 | 0.052378 |    0.10505 |
+--------+--------+----------+----------+------------+

Second and subsequent macrocycles are refined using the same number of reflections, but after extending to higher resolution. The RMSDs at the start of each cycle start off worse than at the end of the previous cycle, because the best fit model for lower resolution data is being applied to higher resolution reflections. As long as each macrocyle shows a reduction in RMSDs then refinement is doing its job of extending the applicability of the model out to a new resolution limit, until eventually the highest resolution strong spots have been included. The final macrocycle includes data out to 1.30 Å and produces a final model with RMSDs of 0.050 mm in X, 0.049 mm in Y and 0.104° in φ, corresponding to 0.29 pixels in X, 0.28 pixels in Y and 0.21 image widths in φ.

Despite the high quality of this data, we notice from the log that at each macrocycle there were some outliers identified and removed from refinement as resolution increases. Large outliers can dominate refinement using a least squares target, so it is important to be able to remove these. More about this is discussed below in Refinement. It’s also worth checking the total number of reflections that were unable to be assigned an index:

549
550
551
552
553
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107264 |           733 | 99.3%       |
+------------+-------------+---------------+-------------+

because this can be an indication of poor data quality or a sign that more care needs to be taken in selecting the strategy used by dials.index.

After indexing it can be useful to inspect the reciprocal lattice again:

dials.reciprocal_lattice_viewer indexed.expt indexed.refl

Now indexed/unindexed spots are differentiated by colour, and it is possible to see which spots were marked by dials.refine as outliers. If you have a dataset with multiple lattices present, it may be possible to spot them in the unindexed reflections.

In this case, we can see that the refinement has clearly resolved whatever systematic error was causing distortions in the reciprocal space view, and the determined reciprocal unit cell fits the data well:

../../_images/reciprocal_lattice_indexed.png

Bravais Lattice Refinement

Since we didn’t know the Bravais lattice before indexing, we can now use dials.refine_bravais_settings to determine likely candidates. This takes the results of the P1 autoindexing and runs refinement with all of the possible Bravais settings applied, allowing you to choose your preferred solution:

dials.refine_bravais_settings indexed.expt indexed.refl

giving a table containing scoring data and unit cell for each Bravais setting:

Chiral space groups corresponding to each Bravais lattice:
aP: P1
mP: P2 P21
mC: C2
oC: C2221 C222
+------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------+
|   Solution |   Metric fit |   rmsd | min/max cc   |   #spots | lattice   | unit_cell                                |   volume | cb_op      |
|------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------|
|          5 |       3.0457 |  2.375 | 0.604/0.968  |    35999 | oC        | 52.59  60.69  68.41  90.00  90.00  90.00 |   218334 | a+b,-a+b,c |
|          4 |       3.0455 |  2.384 | 0.609/0.609  |    35999 | mC        | 60.65  52.58  68.39  90.00  89.94  90.00 |   218080 | a-b,a+b,c  |
|          3 |       3.0457 |  2.378 | 0.604/0.604  |    36000 | mP        | 40.14  68.34  40.09  90.00  98.16  90.00 |   108857 | -a,-c,-b   |
|   *      2 |       0.0326 |  0.072 | 0.968/0.968  |    36000 | mC        | 53.17  61.25  69.29  90.00  93.05  90.00 |   225340 | a+b,-a+b,c |
|   *      1 |       0      |  0.07  | -/-          |    36000 | aP        | 40.55  40.56  69.29  92.02  91.97  98.08 |   112674 | a,b,c      |
+------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------+
* = recommended solution

Saving summary as bravais_summary.json
Saving solution 5 as bravais_setting_5.expt
Saving solution 4 as bravais_setting_4.expt
Saving solution 3 as bravais_setting_3.expt
Saving solution 2 as bravais_setting_2.expt
Saving solution 1 as bravais_setting_1.expt

The scores include the metric fit (in degrees), RMSDs (in mm), and the best and worse correlation coefficients for data related by symmetry elements implied by the lowest symmetry space group from the Bravais setting. This uses the raw spot intensity measurement from the spot- finding procedure (uncorrected and unscaled) but provides a very useful check to see if the data does appear to adhere to the proposed symmetry operators.

A separate bravais_setting_N.expt experiments file is written for each plausible lattice type, corresponding to the solution index. In this example we choose to continue processing with bravais_setting_2.expt, which is the highest symmetry suggested result - the options 3, 4, 5 have higher symmetries, but at the cost of a steep jump in RMSd’s and worsening of fit.

In cases where the change of basis operator to the chosen setting is the identity operator (a,b,c) we can proceed directly to further refinement. However, we notice that the change of basis operator for our chosen solution is a+b,-a+b,c, so it is necessary to reindex the indexed.refl file output by using dials.reindex:

dials.reindex indexed.refl change_of_basis_op=a+b,-a+b,c

This outputs the file reindexed.refl which we now use as input to downstream programs, in place of the original indexed.refl.

Refinement

The model is already refined during indexing, but we can also add explicit refinement steps using dials.refine in here, to use all reflections in refinement rather than a subset and to fit a scan-varying model of the crystal. There are many options to refinement - to show all the options up to and including expert_level=1 use this command:

dials.refine -c -e 1

and descriptions of each of the options can be included by adding -a1 to the command. All of the main DIALS tools have equivalent command-line options to list available options.

To refine a static model including the monoclinic constraints from dials.refine_bravais_settings run:

dials.refine bravais_setting_2.expt reindexed.refl scan_varying=false

Show/Hide Log

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

refinement {
  parameterisation {
    scan_varying = False
  }
}
input {
  experiments = bravais_setting_2.expt
  reflections = reindexed.refl
}

Configuring refiner

Summary statistics for 106891 observations matched to predictions:
+-------------------+--------+----------+------------+---------+--------+
|                   |    Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+--------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -1.948 | -0.03532 | -7.621e-05 | 0.03409 | 0.3577 |
| Yc - Yo (mm)      | -1.174 | -0.03515 | -0.0003891 | 0.03422 |  1.681 |
| Phic - Phio (deg) | -1.047 | -0.08285 |  0.0008039 | 0.08427 |  1.356 |
| X weights         |    194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |  143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |  39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+--------+----------+------------+---------+--------+

Detecting centroid outliers using the MCD algorithm
11193 reflections have been flagged as outliers
95698 reflections remain in the manager

Summary statistics for 95698 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1758 | -0.03396 |  -0.001026 | 0.03026 | 0.1723 |
| Yc - Yo (mm)      | -0.1843 | -0.03204 | -0.0007666 | 0.02984 | 0.2342 |
| Phic - Phio (deg) | -0.3632 | -0.07953 |   0.000807 | 0.08146 | 0.3193 |
| X weights         |   210.9 |    385.4 |      398.2 |   403.6 |  405.6 |
| Y weights         |   143.8 |    370.6 |      392.1 |   402.2 |  405.6 |
| Phi weights       |   40.76 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 14 parameters to refine against 95698 reflections in 3 dimensions
Performing refinement of a single Experiment...

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  95698 | 0.046351 | 0.048046 |    0.10464 |
|      1 |  95698 | 0.046288 | 0.04797  |    0.10468 |
|      2 |  95698 | 0.046268 | 0.047948 |    0.10474 |
|      3 |  95698 | 0.046272 | 0.047935 |    0.10476 |
|      4 |  95698 | 0.046276 | 0.04793  |    0.10476 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  95698 |  0.26904 |  0.27867 |    0.20952 |
+-------+--------+----------+----------+------------+
Updating predictions for indexed reflections

Final refined crystal model:
Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                { 0.0000,  0.0163,  0.0000},
                { 0.0010,  0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
Saving refined experiments to refined.expt
Saving reflections with updated predictions to refined.refl

This uses all reflections in refinement rather than a subset and provided a small reduction in RMSDs, writing the results out to refined.expt and refined.refl.

However, the refined model is still static over the whole dataset. We may want to do an additional refinement job to fit a more sophisticated model for the crystal, allowing small misset rotations to occur over the course of the scan. There are usually even small changes to the cell dimensions (typically resulting in a net increase in cell volume) caused by exposure to radiation during data collection. To account for both of these effects we can extend our parameterisation to obtain a smoothed scan-varying model for both the crystal orientation and unit cell. This means running a further refinement job starting from the output of the previous job:

dials.refine refined.expt refined.refl scan_varying=true

Show/Hide Log

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

refinement {
  parameterisation {
    scan_varying = True
  }
}
input {
  experiments = refined.expt
  reflections = refined.refl
}

Configuring refiner

Summary statistics for 106889 observations matched to predictions:
+-------------------+--------+----------+------------+---------+--------+
|                   |    Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+--------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.94 | -0.03432 |  0.0006267 | 0.03483 | 0.3635 |
| Yc - Yo (mm)      | -1.181 | -0.03496 | -9.466e-05 | 0.03451 |  1.727 |
| Phic - Phio (deg) | -1.061 |  -0.0839 |  3.415e-05 | 0.08361 |  1.378 |
| X weights         |    194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |  143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |  39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+--------+----------+------------+---------+--------+

Detecting centroid outliers using the MCD algorithm
11474 reflections have been flagged as outliers
95415 reflections remain in the manager

Summary statistics for 95415 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1597 | -0.03294 |  -0.000389 | 0.03063 | 0.1746 |
| Yc - Yo (mm)      | -0.1822 |  -0.0315 | -0.0003536 | 0.03033 | 0.2338 |
| Phic - Phio (deg) | -0.3681 | -0.08071 | -7.198e-05 | 0.08054 | 0.3162 |
| X weights         |   210.9 |    385.5 |      398.2 |   403.6 |  405.6 |
| Y weights         |   143.8 |    370.7 |      392.1 |   402.3 |  405.6 |
| Phi weights       |   40.76 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 91 parameters to refine against 95415 reflections in 3 dimensions
Performing refinement of a single Experiment...

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  95415 | 0.045994 | 0.047882 |    0.1047  |
|      1 |  95415 | 0.043137 | 0.040683 |    0.10342 |
|      2 |  95415 | 0.041146 | 0.039717 |    0.1028  |
|      3 |  95415 | 0.040602 | 0.039511 |    0.10247 |
|      4 |  95415 | 0.040487 | 0.039501 |    0.10226 |
|      5 |  95415 | 0.040464 | 0.039497 |    0.10216 |
|      6 |  95415 | 0.040459 | 0.039496 |    0.10214 |
|      7 |  95415 | 0.040458 | 0.039497 |    0.10214 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  95415 |  0.23522 |  0.22963 |    0.20428 |
+-------+--------+----------+----------+------------+
Updating predictions for indexed reflections

Final refined crystal model:
Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                {-0.0000,  0.0163,  0.0000},
                { 0.0010,  0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
    A sampled at 721 scan points
Saving refined experiments to refined.expt
Saving reflections with updated predictions to refined.refl

which writes over the refined.expt and refined.refl from the previous refinement step. By default the scan-varying refinement looks for smooth changes over an interval of 36° intervals, to avoid fitting unphysical models to noise, though this parameter can be tuned. We can use the HTML report, described shortly, to view the results of fitting to smoothly varying crystal cell parameters:

../../_images/scan_varying.png

In this tutorial, we see no overall increase in all three cell parameters. If significant cell volume increases had been observed that might be indicative of radiation damage. However we can’t yet conclude that there is no radiation damage from the lack of considerable change observed.

Integration

After the refinement is done the next step is integration, which is performed by the program dials.integrate. Mostly, the default parameters are fine for Pilatus data, which will perform XDS-like 3D profile fitting while using a generalized linear model in order to fit a Poisson-distributed background model. We will also increase the number of processors used to speed the job up.

dials.integrate refined.expt refined.refl nproc=4

Show/Hide Log

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:
integration {
  mp {
    nproc = 4
  }
}
input {
  experiments = refined.expt
  reflections = refined.refl
}


================================================================================

Experiments

Models for experiment 0

Beam:
    wavelength: 1.23985
    sample to source direction : {0.000829704,-0,1}
    divergence: 0
    sigma divergence: 0
    polarization normal: {0,1,0}
    polarization fraction: 0.999

Detector:
Panel:
  name: Panel
  type: SENSOR_PAD
  identifier: 
  pixel_size:{0.172,0.172}
  image_size: {2463,2527}
  trusted_range: {-1,1.22424e+06}
  thickness: 0.32
  material: Si
  mu: 7.89652
  gain: 1
  pedestal: 0
  fast_axis: {0.999913,-0.005565,-0.0119294}
  slow_axis: {-0.00567791,-0.999939,-0.00945161}
  origin: {-217.505,210.385,-164.522}
  distance: 169.088
  pixel to millimeter strategy: ParallaxCorrectedPxMmStrategy
    mu: 7.89652
    t0: 0.32

Goniometer:
    Rotation axis:   {1,0,0}
    Fixed rotation:  {0.965028,0.0598562,-0.255222,-0.128604,-0.74028,-0.659883,-0.228434,0.669628,-0.706694}
    Setting rotation:{1,0,0,0,1,0,0,0,1}
    Axis #0 (GON_PHI):  {1,0,0}
    Axis #1 (GON_KAPPA):  {0.914,0.279,-0.297}
    Axis #2 (GON_OMEGA):  {1,0,0}
    Angles: 102.6,37.9,0
    scan axis: #2 (GON_OMEGA)

Scan:
    image range:   {1,720}
    oscillation:   {0,0.5}
    exposure time: 0.5

Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                { 0.0000,  0.0163,  0.0000},
                { 0.0010,  0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
    A sampled at 721 scan points

================================================================================

Initialising
Processing reference reflections
 read 107999 strong spots
 removing 735 unindexed reflections
 removing 11850 reflections marked as bad for refinement
 using 95414 indexed reflections
 found 12585 junk reflections
 masked neighbouring pixels in 4 shoeboxes

================================================================================

Predicting reflections
Prediction type: scan varying crystal prediction
Predicted 368592 reflections
Matching reference spots with predicted reflections
 95414 observed reflections input
 368592 reflections predicted
 95414 reflections matched
 95414 reflections accepted
Using 95414 / 95414 reflections for sigma calculation
Calculating E.S.D Beam Divergence.
Calculating E.S.D Reflecting Range (mosaicity).
 sigma b: 0.044176 degrees
 sigma m: 0.057791 degrees
================================================================================

Processing reflections

 Processing the following experiments:

 Experiments: 1
 Beams:       1
 Detectors:   1
 Goniometers: 1
 Scans:       1
 Crystals:    1
 Imagesets:   1

================================================================================

Modelling reflection profiles

 Split 13 reflections overlapping job boundaries

Memory situation report:
  Available system memory (excluding swap)          : 14.4 GB
  Available swap memory                             :  6.0 GB
  Available system memory (including swap)          : 20.4 GB
  Maximum memory for processing (including swap)    : 18.4 GB
  Maximum memory for processing (excluding swap)    : 13.0 GB
  Memory required per process                       :  0.0 GB
  no memory ulimit set

Processing reflections in the following blocks of images:

 block_size: Auto 

+-----+---------+--------------+------------+--------------+------------+-----------------+
|   # |   Group |   Frame From |   Frame To |   Angle From |   Angle To |   # Reflections |
|-----+---------+--------------+------------+--------------+------------+-----------------|
|   0 |       0 |            1 |        183 |            0 |       91.5 |           26312 |
|   1 |       0 |          181 |        363 |           90 |      181.5 |           22782 |
|   2 |       0 |          361 |        543 |          180 |      271.5 |           23862 |
|   3 |       0 |          541 |        720 |          270 |      360   |           22471 |
+-----+---------+--------------+------------+--------------+------------+-----------------+

 Using multiprocessing with 4 parallel job(s)


 Frames: 1 -> 183

 Number of reflections
  Partial:     91
  Full:        26221
  In ice ring: 0
  Total:       26312


 Frames: 181 -> 363

 Number of reflections
  Partial:     7
  Full:        22775
  In ice ring: 0
  Total:       22782


 Frames: 361 -> 543

 Number of reflections
  Partial:     10
  Full:        23852
  In ice ring: 0
  Total:       23862


 Frames: 541 -> 720

 Number of reflections
  Partial:     75
  Full:        22396
  In ice ring: 0
  Total:       22471


 Summary of profile model
+------+-----------+-----------+----------+----------+----------+-----------------+
|   ID |   Profile | Created   |   X (px) |   Y (px) |   Z (im) |   # reflections |
|------+-----------+-----------+----------+----------+----------+-----------------|
|    0 |         0 | True      |    410.5 |   421.17 |        5 |            1689 |
|    0 |         1 | True      |   1231.5 |   421.17 |        5 |            2008 |
|    0 |         2 | True      |   2052.5 |   421.17 |        5 |            1807 |
|    0 |         3 | True      |    410.5 |  1263.5  |        5 |            2341 |
|    0 |         4 | True      |   1231.5 |  1263.5  |        5 |            2815 |
|    0 |         5 | True      |   2052.5 |  1263.5  |        5 |            2569 |
|    0 |         6 | True      |    410.5 |  2105.83 |        5 |            1756 |
|    0 |         7 | True      |   1231.5 |  2105.83 |        5 |            2168 |
|    0 |         8 | True      |   2052.5 |  2105.83 |        5 |            1965 |
|    0 |         9 | True      |    410.5 |   421.17 |       15 |            2560 |
|    0 |        10 | True      |   1231.5 |   421.17 |       15 |            3052 |
|    0 |        11 | True      |   2052.5 |   421.17 |       15 |            2733 |
|    0 |        12 | True      |    410.5 |  1263.5  |       15 |            3546 |
|    0 |        13 | True      |   1231.5 |  1263.5  |       15 |            4266 |
|    0 |        14 | True      |   2052.5 |  1263.5  |       15 |            3869 |
|    0 |        15 | True      |    410.5 |  2105.83 |       15 |            2654 |
|    0 |        16 | True      |   1231.5 |  2105.83 |       15 |            3274 |
|    0 |        17 | True      |   2052.5 |  2105.83 |       15 |            2953 |
|    0 |        18 | True      |    410.5 |   421.17 |       25 |            2634 |
|    0 |        19 | True      |   1231.5 |   421.17 |       25 |            3140 |
|    0 |        20 | True      |   2052.5 |   421.17 |       25 |            2788 |
|    0 |        21 | True      |    410.5 |  1263.5  |       25 |            3602 |
|    0 |        22 | True      |   1231.5 |  1263.5  |       25 |            4310 |
|    0 |        23 | True      |   2052.5 |  1263.5  |       25 |            3881 |
|    0 |        24 | True      |    410.5 |  2105.83 |       25 |            2613 |
|    0 |        25 | True      |   1231.5 |  2105.83 |       25 |            3202 |
|    0 |        26 | True      |   2052.5 |  2105.83 |       25 |            2874 |
|    0 |        27 | True      |    410.5 |   421.17 |       35 |            2692 |
|    0 |        28 | True      |   1231.5 |   421.17 |       35 |            3208 |
|    0 |        29 | True      |   2052.5 |   421.17 |       35 |            2844 |
|    0 |        30 | True      |    410.5 |  1263.5  |       35 |            3645 |
|    0 |        31 | True      |   1231.5 |  1263.5  |       35 |            4342 |
|    0 |        32 | True      |   2052.5 |  1263.5  |       35 |            3901 |
|    0 |        33 | True      |    410.5 |  2105.83 |       35 |            2562 |
|    0 |        34 | True      |   1231.5 |  2105.83 |       35 |            3129 |
|    0 |        35 | True      |   2052.5 |  2105.83 |       35 |            2808 |
|    0 |        36 | True      |    410.5 |   421.17 |       45 |            2752 |
|    0 |        37 | True      |   1231.5 |   421.17 |       45 |            3266 |
|    0 |        38 | True      |   2052.5 |   421.17 |       45 |            2896 |
|    0 |        39 | True      |    410.5 |  1263.5  |       45 |            3630 |
|    0 |        40 | True      |   1231.5 |  1263.5  |       45 |            4292 |
|    0 |        41 | True      |   2052.5 |  1263.5  |       45 |            3870 |
|    0 |        42 | True      |    410.5 |  2105.83 |       45 |            2446 |
|    0 |        43 | True      |   1231.5 |  2105.83 |       45 |            2968 |
|    0 |        44 | True      |   2052.5 |  2105.83 |       45 |            2687 |
|    0 |        45 | True      |    410.5 |   421.17 |       55 |            2821 |
|    0 |        46 | True      |   1231.5 |   421.17 |       55 |            3331 |
|    0 |        47 | True      |   2052.5 |   421.17 |       55 |            2949 |
|    0 |        48 | True      |    410.5 |  1263.5  |       55 |            3631 |
|    0 |        49 | True      |   1231.5 |  1263.5  |       55 |            4268 |
|    0 |        50 | True      |   2052.5 |  1263.5  |       55 |            3840 |
|    0 |        51 | True      |    410.5 |  2105.83 |       55 |            2381 |
|    0 |        52 | True      |   1231.5 |  2105.83 |       55 |            2869 |
|    0 |        53 | True      |   2052.5 |  2105.83 |       55 |            2598 |
|    0 |        54 | True      |    410.5 |   421.17 |       65 |            2877 |
|    0 |        55 | True      |   1231.5 |   421.17 |       65 |            3406 |
|    0 |        56 | True      |   2052.5 |   421.17 |       65 |            2990 |
|    0 |        57 | True      |    410.5 |  1263.5  |       65 |            3629 |
|    0 |        58 | True      |   1231.5 |  1263.5  |       65 |            4266 |
|    0 |        59 | True      |   2052.5 |  1263.5  |       65 |            3815 |
|    0 |        60 | True      |    410.5 |  2105.83 |       65 |            2302 |
|    0 |        61 | True      |   1231.5 |  2105.83 |       65 |            2763 |
|    0 |        62 | True      |   2052.5 |  2105.83 |       65 |            2500 |
|    0 |        63 | True      |    410.5 |   421.17 |       75 |            2984 |
|    0 |        64 | True      |   1231.5 |   421.17 |       75 |            3538 |
|    0 |        65 | True      |   2052.5 |   421.17 |       75 |            3077 |
|    0 |        66 | True      |    410.5 |  1263.5  |       75 |            3674 |
|    0 |        67 | True      |   1231.5 |  1263.5  |       75 |            4329 |
|    0 |        68 | True      |   2052.5 |  1263.5  |       75 |            3835 |
|    0 |        69 | True      |    410.5 |  2105.83 |       75 |            2244 |
|    0 |        70 | True      |   1231.5 |  2105.83 |       75 |            2704 |
|    0 |        71 | True      |   2052.5 |  2105.83 |       75 |            2431 |
|    0 |        72 | True      |    410.5 |   421.17 |       85 |            3027 |
|    0 |        73 | True      |   1231.5 |   421.17 |       85 |            3617 |
|    0 |        74 | True      |   2052.5 |   421.17 |       85 |            3137 |
|    0 |        75 | True      |    410.5 |  1263.5  |       85 |            3681 |
|    0 |        76 | True      |   1231.5 |  1263.5  |       85 |            4370 |
|    0 |        77 | True      |   2052.5 |  1263.5  |       85 |            3865 |
|    0 |        78 | True      |    410.5 |  2105.83 |       85 |            2172 |
|    0 |        79 | True      |   1231.5 |  2105.83 |       85 |            2650 |
|    0 |        80 | True      |   2052.5 |  2105.83 |       85 |            2406 |
|    0 |        81 | True      |    410.5 |   421.17 |       95 |            3140 |
|    0 |        82 | True      |   1231.5 |   421.17 |       95 |            3746 |
|    0 |        83 | True      |   2052.5 |   421.17 |       95 |            3229 |
|    0 |        84 | True      |    410.5 |  1263.5  |       95 |            3744 |
|    0 |        85 | True      |   1231.5 |  1263.5  |       95 |            4444 |
|    0 |        86 | True      |   2052.5 |  1263.5  |       95 |            3908 |
|    0 |        87 | True      |    410.5 |  2105.83 |       95 |            2161 |
|    0 |        88 | True      |   1231.5 |  2105.83 |       95 |            2644 |
|    0 |        89 | True      |   2052.5 |  2105.83 |       95 |            2399 |
|    0 |        90 | True      |    410.5 |   421.17 |      105 |            3174 |
|    0 |        91 | True      |   1231.5 |   421.17 |      105 |            3784 |
|    0 |        92 | True      |   2052.5 |   421.17 |      105 |            3278 |
|    0 |        93 | True      |    410.5 |  1263.5  |      105 |            3753 |
|    0 |        94 | True      |   1231.5 |  1263.5  |      105 |            4452 |
|    0 |        95 | True      |   2052.5 |  1263.5  |      105 |            3926 |
|    0 |        96 | True      |    410.5 |  2105.83 |      105 |            2132 |
|    0 |        97 | True      |   1231.5 |  2105.83 |      105 |            2604 |
|    0 |        98 | True      |   2052.5 |  2105.83 |      105 |            2379 |
|    0 |        99 | True      |    410.5 |   421.17 |      115 |            3276 |
|    0 |       100 | True      |   1231.5 |   421.17 |      115 |            3888 |
|    0 |       101 | True      |   2052.5 |   421.17 |      115 |            3346 |
|    0 |       102 | True      |    410.5 |  1263.5  |      115 |            3805 |
|    0 |       103 | True      |   1231.5 |  1263.5  |      115 |            4492 |
|    0 |       104 | True      |   2052.5 |  1263.5  |      115 |            3927 |
|    0 |       105 | True      |    410.5 |  2105.83 |      115 |            2147 |
|    0 |       106 | True      |   1231.5 |  2105.83 |      115 |            2602 |
|    0 |       107 | True      |   2052.5 |  2105.83 |      115 |            2351 |
|    0 |       108 | True      |    410.5 |   421.17 |      125 |            3237 |
|    0 |       109 | True      |   1231.5 |   421.17 |      125 |            3828 |
|    0 |       110 | True      |   2052.5 |   421.17 |      125 |            3263 |
|    0 |       111 | True      |    410.5 |  1263.5  |      125 |            3721 |
|    0 |       112 | True      |   1231.5 |  1263.5  |      125 |            4382 |
|    0 |       113 | True      |   2052.5 |  1263.5  |      125 |            3792 |
|    0 |       114 | True      |    410.5 |  2105.83 |      125 |            2132 |
|    0 |       115 | True      |   1231.5 |  2105.83 |      125 |            2572 |
|    0 |       116 | True      |   2052.5 |  2105.83 |      125 |            2307 |
|    0 |       117 | True      |    410.5 |   421.17 |      135 |            3213 |
|    0 |       118 | True      |   1231.5 |   421.17 |      135 |            3779 |
|    0 |       119 | True      |   2052.5 |   421.17 |      135 |            3198 |
|    0 |       120 | True      |    410.5 |  1263.5  |      135 |            3663 |
|    0 |       121 | True      |   1231.5 |  1263.5  |      135 |            4294 |
|    0 |       122 | True      |   2052.5 |  1263.5  |      135 |            3687 |
|    0 |       123 | True      |    410.5 |  2105.83 |      135 |            2138 |
|    0 |       124 | True      |   1231.5 |  2105.83 |      135 |            2568 |
|    0 |       125 | True      |   2052.5 |  2105.83 |      135 |            2280 |
|    0 |       126 | True      |    410.5 |   421.17 |      145 |            3115 |
|    0 |       127 | True      |   1231.5 |   421.17 |      145 |            3660 |
|    0 |       128 | True      |   2052.5 |   421.17 |      145 |            3107 |
|    0 |       129 | True      |    410.5 |  1263.5  |      145 |            3558 |
|    0 |       130 | True      |   1231.5 |  1263.5  |      145 |            4167 |
|    0 |       131 | True      |   2052.5 |  1263.5  |      145 |            3589 |
|    0 |       132 | True      |    410.5 |  2105.83 |      145 |            2146 |
|    0 |       133 | True      |   1231.5 |  2105.83 |      145 |            2571 |
|    0 |       134 | True      |   2052.5 |  2105.83 |      145 |            2287 |
|    0 |       135 | True      |    410.5 |   421.17 |      155 |            3049 |
|    0 |       136 | True      |   1231.5 |   421.17 |      155 |            3579 |
|    0 |       137 | True      |   2052.5 |   421.17 |      155 |            3062 |
|    0 |       138 | True      |    410.5 |  1263.5  |      155 |            3495 |
|    0 |       139 | True      |   1231.5 |  1263.5  |      155 |            4088 |
|    0 |       140 | True      |   2052.5 |  1263.5  |      155 |            3550 |
|    0 |       141 | True      |    410.5 |  2105.83 |      155 |            2147 |
|    0 |       142 | True      |   1231.5 |  2105.83 |      155 |            2581 |
|    0 |       143 | True      |   2052.5 |  2105.83 |      155 |            2301 |
|    0 |       144 | True      |    410.5 |   421.17 |      165 |            3025 |
|    0 |       145 | True      |   1231.5 |   421.17 |      165 |            3546 |
|    0 |       146 | True      |   2052.5 |   421.17 |      165 |            3018 |
|    0 |       147 | True      |    410.5 |  1263.5  |      165 |            3480 |
|    0 |       148 | True      |   1231.5 |  1263.5  |      165 |            4061 |
|    0 |       149 | True      |   2052.5 |  1263.5  |      165 |            3514 |
|    0 |       150 | True      |    410.5 |  2105.83 |      165 |            2193 |
|    0 |       151 | True      |   1231.5 |  2105.83 |      165 |            2632 |
|    0 |       152 | True      |   2052.5 |  2105.83 |      165 |            2332 |
|    0 |       153 | True      |    410.5 |   421.17 |      175 |            2951 |
|    0 |       154 | True      |   1231.5 |   421.17 |      175 |            3465 |
|    0 |       155 | True      |   2052.5 |   421.17 |      175 |            2938 |
|    0 |       156 | True      |    410.5 |  1263.5  |      175 |            3395 |
|    0 |       157 | True      |   1231.5 |  1263.5  |      175 |            3962 |
|    0 |       158 | True      |   2052.5 |  1263.5  |      175 |            3423 |
|    0 |       159 | True      |    410.5 |  2105.83 |      175 |            2188 |
|    0 |       160 | True      |   1231.5 |  2105.83 |      175 |            2626 |
|    0 |       161 | True      |   2052.5 |  2105.83 |      175 |            2319 |
|    0 |       162 | True      |    410.5 |   421.17 |      185 |            2904 |
|    0 |       163 | True      |   1231.5 |   421.17 |      185 |            3408 |
|    0 |       164 | True      |   2052.5 |   421.17 |      185 |            2894 |
|    0 |       165 | True      |    410.5 |  1263.5  |      185 |            3330 |
|    0 |       166 | True      |   1231.5 |  1263.5  |      185 |            3883 |
|    0 |       167 | True      |   2052.5 |  1263.5  |      185 |            3358 |
|    0 |       168 | True      |    410.5 |  2105.83 |      185 |            2215 |
|    0 |       169 | True      |   1231.5 |  2105.83 |      185 |            2647 |
|    0 |       170 | True      |   2052.5 |  2105.83 |      185 |            2333 |
|    0 |       171 | True      |    410.5 |   421.17 |      195 |            2796 |
|    0 |       172 | True      |   1231.5 |   421.17 |      195 |            3295 |
|    0 |       173 | True      |   2052.5 |   421.17 |      195 |            2816 |
|    0 |       174 | True      |    410.5 |  1263.5  |      195 |            3221 |
|    0 |       175 | True      |   1231.5 |  1263.5  |      195 |            3767 |
|    0 |       176 | True      |   2052.5 |  1263.5  |      195 |            3273 |
|    0 |       177 | True      |    410.5 |  2105.83 |      195 |            2234 |
|    0 |       178 | True      |   1231.5 |  2105.83 |      195 |            2667 |
|    0 |       179 | True      |   2052.5 |  2105.83 |      195 |            2352 |
|    0 |       180 | True      |    410.5 |   421.17 |      205 |            2704 |
|    0 |       181 | True      |   1231.5 |   421.17 |      205 |            3183 |
|    0 |       182 | True      |   2052.5 |   421.17 |      205 |            2718 |
|    0 |       183 | True      |    410.5 |  1263.5  |      205 |            3106 |
|    0 |       184 | True      |   1231.5 |  1263.5  |      205 |            3646 |
|    0 |       185 | True      |   2052.5 |  1263.5  |      205 |            3162 |
|    0 |       186 | True      |    410.5 |  2105.83 |      205 |            2212 |
|    0 |       187 | True      |   1231.5 |  2105.83 |      205 |            2659 |
|    0 |       188 | True      |   2052.5 |  2105.83 |      205 |            2328 |
|    0 |       189 | True      |    410.5 |   421.17 |      215 |            2631 |
|    0 |       190 | True      |   1231.5 |   421.17 |      215 |            3090 |
|    0 |       191 | True      |   2052.5 |   421.17 |      215 |            2630 |
|    0 |       192 | True      |    410.5 |  1263.5  |      215 |            3055 |
|    0 |       193 | True      |   1231.5 |  1263.5  |      215 |            3587 |
|    0 |       194 | True      |   2052.5 |  1263.5  |      215 |            3106 |
|    0 |       195 | True      |    410.5 |  2105.83 |      215 |            2229 |
|    0 |       196 | True      |   1231.5 |  2105.83 |      215 |            2669 |
|    0 |       197 | True      |   2052.5 |  2105.83 |      215 |            2328 |
|    0 |       198 | True      |    410.5 |   421.17 |      225 |            2530 |
|    0 |       199 | True      |   1231.5 |   421.17 |      225 |            2982 |
|    0 |       200 | True      |   2052.5 |   421.17 |      225 |            2524 |
|    0 |       201 | True      |    410.5 |  1263.5  |      225 |            2967 |
|    0 |       202 | True      |   1231.5 |  1263.5  |      225 |            3497 |
|    0 |       203 | True      |   2052.5 |  1263.5  |      225 |            3016 |
|    0 |       204 | True      |    410.5 |  2105.83 |      225 |            2199 |
|    0 |       205 | True      |   1231.5 |  2105.83 |      225 |            2638 |
|    0 |       206 | True      |   2052.5 |  2105.83 |      225 |            2296 |
|    0 |       207 | True      |    410.5 |   421.17 |      235 |            2569 |
|    0 |       208 | True      |   1231.5 |   421.17 |      235 |            3007 |
|    0 |       209 | True      |   2052.5 |   421.17 |      235 |            2543 |
|    0 |       210 | True      |    410.5 |  1263.5  |      235 |            3050 |
|    0 |       211 | True      |   1231.5 |  1263.5  |      235 |            3574 |
|    0 |       212 | True      |   2052.5 |  1263.5  |      235 |            3084 |
|    0 |       213 | True      |    410.5 |  2105.83 |      235 |            2285 |
|    0 |       214 | True      |   1231.5 |  2105.83 |      235 |            2719 |
|    0 |       215 | True      |   2052.5 |  2105.83 |      235 |            2368 |
|    0 |       216 | True      |    410.5 |   421.17 |      245 |            2550 |
|    0 |       217 | True      |   1231.5 |   421.17 |      245 |            2989 |
|    0 |       218 | True      |   2052.5 |   421.17 |      245 |            2523 |
|    0 |       219 | True      |    410.5 |  1263.5  |      245 |            3059 |
|    0 |       220 | True      |   1231.5 |  1263.5  |      245 |            3583 |
|    0 |       221 | True      |   2052.5 |  1263.5  |      245 |            3079 |
|    0 |       222 | True      |    410.5 |  2105.83 |      245 |            2310 |
|    0 |       223 | True      |   1231.5 |  2105.83 |      245 |            2747 |
|    0 |       224 | True      |   2052.5 |  2105.83 |      245 |            2381 |
|    0 |       225 | True      |    410.5 |   421.17 |      255 |            2621 |
|    0 |       226 | True      |   1231.5 |   421.17 |      255 |            3057 |
|    0 |       227 | True      |   2052.5 |   421.17 |      255 |            2590 |
|    0 |       228 | True      |    410.5 |  1263.5  |      255 |            3157 |
|    0 |       229 | True      |   1231.5 |  1263.5  |      255 |            3692 |
|    0 |       230 | True      |   2052.5 |  1263.5  |      255 |            3180 |
|    0 |       231 | True      |    410.5 |  2105.83 |      255 |            2376 |
|    0 |       232 | True      |   1231.5 |  2105.83 |      255 |            2835 |
|    0 |       233 | True      |   2052.5 |  2105.83 |      255 |            2452 |
|    0 |       234 | True      |    410.5 |   421.17 |      265 |            2616 |
|    0 |       235 | True      |   1231.5 |   421.17 |      265 |            3036 |
|    0 |       236 | True      |   2052.5 |   421.17 |      265 |            2561 |
|    0 |       237 | True      |    410.5 |  1263.5  |      265 |            3211 |
|    0 |       238 | True      |   1231.5 |  1263.5  |      265 |            3730 |
|    0 |       239 | True      |   2052.5 |  1263.5  |      265 |            3187 |
|    0 |       240 | True      |    410.5 |  2105.83 |      265 |            2444 |
|    0 |       241 | True      |   1231.5 |  2105.83 |      265 |            2895 |
|    0 |       242 | True      |   2052.5 |  2105.83 |      265 |            2464 |
|    0 |       243 | True      |    410.5 |   421.17 |      275 |            2619 |
|    0 |       244 | True      |   1231.5 |   421.17 |      275 |            3019 |
|    0 |       245 | True      |   2052.5 |   421.17 |      275 |            2548 |
|    0 |       246 | True      |    410.5 |  1263.5  |      275 |            3273 |
|    0 |       247 | True      |   1231.5 |  1263.5  |      275 |            3772 |
|    0 |       248 | True      |   2052.5 |  1263.5  |      275 |            3216 |
|    0 |       249 | True      |    410.5 |  2105.83 |      275 |            2499 |
|    0 |       250 | True      |   1231.5 |  2105.83 |      275 |            2947 |
|    0 |       251 | True      |   2052.5 |  2105.83 |      275 |            2483 |
|    0 |       252 | True      |    410.5 |   421.17 |      285 |            2560 |
|    0 |       253 | True      |   1231.5 |   421.17 |      285 |            2939 |
|    0 |       254 | True      |   2052.5 |   421.17 |      285 |            2481 |
|    0 |       255 | True      |    410.5 |  1263.5  |      285 |            3287 |
|    0 |       256 | True      |   1231.5 |  1263.5  |      285 |            3761 |
|    0 |       257 | True      |   2052.5 |  1263.5  |      285 |            3195 |
|    0 |       258 | True      |    410.5 |  2105.83 |      285 |            2555 |
|    0 |       259 | True      |   1231.5 |  2105.83 |      285 |            2982 |
|    0 |       260 | True      |   2052.5 |  2105.83 |      285 |            2492 |
|    0 |       261 | True      |    410.5 |   421.17 |      295 |            2500 |
|    0 |       262 | True      |   1231.5 |   421.17 |      295 |            2896 |
|    0 |       263 | True      |   2052.5 |   421.17 |      295 |            2464 |
|    0 |       264 | True      |    410.5 |  1263.5  |      295 |            3277 |
|    0 |       265 | True      |   1231.5 |  1263.5  |      295 |            3778 |
|    0 |       266 | True      |   2052.5 |  1263.5  |      295 |            3226 |
|    0 |       267 | True      |    410.5 |  2105.83 |      295 |            2565 |
|    0 |       268 | True      |   1231.5 |  2105.83 |      295 |            3015 |
|    0 |       269 | True      |   2052.5 |  2105.83 |      295 |            2533 |
|    0 |       270 | True      |    410.5 |   421.17 |      305 |            2466 |
|    0 |       271 | True      |   1231.5 |   421.17 |      305 |            2870 |
|    0 |       272 | True      |   2052.5 |   421.17 |      305 |            2455 |
|    0 |       273 | True      |    410.5 |  1263.5  |      305 |            3297 |
|    0 |       274 | True      |   1231.5 |  1263.5  |      305 |            3816 |
|    0 |       275 | True      |   2052.5 |  1263.5  |      305 |            3264 |
|    0 |       276 | True      |    410.5 |  2105.83 |      305 |            2620 |
|    0 |       277 | True      |   1231.5 |  2105.83 |      305 |            3087 |
|    0 |       278 | True      |   2052.5 |  2105.83 |      305 |            2604 |
|    0 |       279 | True      |    410.5 |   421.17 |      315 |            2452 |
|    0 |       280 | True      |   1231.5 |   421.17 |      315 |            2869 |
|    0 |       281 | True      |   2052.5 |   421.17 |      315 |            2457 |
|    0 |       282 | True      |    410.5 |  1263.5  |      315 |            3327 |
|    0 |       283 | True      |   1231.5 |  1263.5  |      315 |            3863 |
|    0 |       284 | True      |   2052.5 |  1263.5  |      315 |            3295 |
|    0 |       285 | True      |    410.5 |  2105.83 |      315 |            2662 |
|    0 |       286 | True      |   1231.5 |  2105.83 |      315 |            3135 |
|    0 |       287 | True      |   2052.5 |  2105.83 |      315 |            2631 |
|    0 |       288 | True      |    410.5 |   421.17 |      325 |            2408 |
|    0 |       289 | True      |   1231.5 |   421.17 |      325 |            2825 |
|    0 |       290 | True      |   2052.5 |   421.17 |      325 |            2436 |
|    0 |       291 | True      |    410.5 |  1263.5  |      325 |            3328 |
|    0 |       292 | True      |   1231.5 |  1263.5  |      325 |            3864 |
|    0 |       293 | True      |   2052.5 |  1263.5  |      325 |            3303 |
|    0 |       294 | True      |    410.5 |  2105.83 |      325 |            2681 |
|    0 |       295 | True      |   1231.5 |  2105.83 |      325 |            3149 |
|    0 |       296 | True      |   2052.5 |  2105.83 |      325 |            2643 |
|    0 |       297 | True      |    410.5 |   421.17 |      335 |            2359 |
|    0 |       298 | True      |   1231.5 |   421.17 |      335 |            2792 |
|    0 |       299 | True      |   2052.5 |   421.17 |      335 |            2421 |
|    0 |       300 | True      |    410.5 |  1263.5  |      335 |            3320 |
|    0 |       301 | True      |   1231.5 |  1263.5  |      335 |            3873 |
|    0 |       302 | True      |   2052.5 |  1263.5  |      335 |            3313 |
|    0 |       303 | True      |    410.5 |  2105.83 |      335 |            2679 |
|    0 |       304 | True      |   1231.5 |  2105.83 |      335 |            3151 |
|    0 |       305 | True      |   2052.5 |  2105.83 |      335 |            2635 |
|    0 |       306 | True      |    410.5 |   421.17 |      345 |            2357 |
|    0 |       307 | True      |   1231.5 |   421.17 |      345 |            2816 |
|    0 |       308 | True      |   2052.5 |   421.17 |      345 |            2462 |
|    0 |       309 | True      |    410.5 |  1263.5  |      345 |            3350 |
|    0 |       310 | True      |   1231.5 |  1263.5  |      345 |            3931 |
|    0 |       311 | True      |   2052.5 |  1263.5  |      345 |            3410 |
|    0 |       312 | True      |    410.5 |  2105.83 |      345 |            2700 |
|    0 |       313 | True      |   1231.5 |  2105.83 |      345 |            3192 |
|    0 |       314 | True      |   2052.5 |  2105.83 |      345 |            2711 |
|    0 |       315 | True      |    410.5 |   421.17 |      355 |            2400 |
|    0 |       316 | True      |   1231.5 |   421.17 |      355 |            2877 |
|    0 |       317 | True      |   2052.5 |   421.17 |      355 |            2545 |
|    0 |       318 | True      |    410.5 |  1263.5  |      355 |            3427 |
|    0 |       319 | True      |   1231.5 |  1263.5  |      355 |            4021 |
|    0 |       320 | True      |   2052.5 |  1263.5  |      355 |            3532 |
|    0 |       321 | True      |    410.5 |  2105.83 |      355 |            2721 |
|    0 |       322 | True      |   1231.5 |  2105.83 |      355 |            3218 |
|    0 |       323 | True      |   2052.5 |  2105.83 |      355 |            2766 |
|    0 |       324 | True      |    410.5 |   421.17 |      365 |            2428 |
|    0 |       325 | True      |   1231.5 |   421.17 |      365 |            2929 |
|    0 |       326 | True      |   2052.5 |   421.17 |      365 |            2614 |
|    0 |       327 | True      |    410.5 |  1263.5  |      365 |            3433 |
|    0 |       328 | True      |   1231.5 |  1263.5  |      365 |            4047 |
|    0 |       329 | True      |   2052.5 |  1263.5  |      365 |            3597 |
|    0 |       330 | True      |    410.5 |  2105.83 |      365 |            2676 |
|    0 |       331 | True      |   1231.5 |  2105.83 |      365 |            3178 |
|    0 |       332 | True      |   2052.5 |  2105.83 |      365 |            2763 |
|    0 |       333 | True      |    410.5 |   421.17 |      375 |            2449 |
|    0 |       334 | True      |   1231.5 |   421.17 |      375 |            2950 |
|    0 |       335 | True      |   2052.5 |   421.17 |      375 |            2649 |
|    0 |       336 | True      |    410.5 |  1263.5  |      375 |            3452 |
|    0 |       337 | True      |   1231.5 |  1263.5  |      375 |            4058 |
|    0 |       338 | True      |   2052.5 |  1263.5  |      375 |            3610 |
|    0 |       339 | True      |    410.5 |  2105.83 |      375 |            2638 |
|    0 |       340 | True      |   1231.5 |  2105.83 |      375 |            3120 |
|    0 |       341 | True      |   2052.5 |  2105.83 |      375 |            2714 |
|    0 |       342 | True      |    410.5 |   421.17 |      385 |            2464 |
|    0 |       343 | True      |   1231.5 |   421.17 |      385 |            2981 |
|    0 |       344 | True      |   2052.5 |   421.17 |      385 |            2683 |
|    0 |       345 | True      |    410.5 |  1263.5  |      385 |            3425 |
|    0 |       346 | True      |   1231.5 |  1263.5  |      385 |            4038 |
|    0 |       347 | True      |   2052.5 |  1263.5  |      385 |            3602 |
|    0 |       348 | True      |    410.5 |  2105.83 |      385 |            2549 |
|    0 |       349 | True      |   1231.5 |  2105.83 |      385 |            3025 |
|    0 |       350 | True      |   2052.5 |  2105.83 |      385 |            2640 |
|    0 |       351 | True      |    410.5 |   421.17 |      395 |            2515 |
|    0 |       352 | True      |   1231.5 |   421.17 |      395 |            3050 |
|    0 |       353 | True      |   2052.5 |   421.17 |      395 |            2743 |
|    0 |       354 | True      |    410.5 |  1263.5  |      395 |            3471 |
|    0 |       355 | True      |   1231.5 |  1263.5  |      395 |            4096 |
|    0 |       356 | True      |   2052.5 |  1263.5  |      395 |            3655 |
|    0 |       357 | True      |    410.5 |  2105.83 |      395 |            2523 |
|    0 |       358 | True      |   1231.5 |  2105.83 |      395 |            2995 |
|    0 |       359 | True      |   2052.5 |  2105.83 |      395 |            2619 |
|    0 |       360 | True      |    410.5 |   421.17 |      405 |            2554 |
|    0 |       361 | True      |   1231.5 |   421.17 |      405 |            3106 |
|    0 |       362 | True      |   2052.5 |   421.17 |      405 |            2805 |
|    0 |       363 | True      |    410.5 |  1263.5  |      405 |            3447 |
|    0 |       364 | True      |   1231.5 |  1263.5  |      405 |            4081 |
|    0 |       365 | True      |   2052.5 |  1263.5  |      405 |            3671 |
|    0 |       366 | True      |    410.5 |  2105.83 |      405 |            2420 |
|    0 |       367 | True      |   1231.5 |  2105.83 |      405 |            2884 |
|    0 |       368 | True      |   2052.5 |  2105.83 |      405 |            2541 |
|    0 |       369 | True      |    410.5 |   421.17 |      415 |            2594 |
|    0 |       370 | True      |   1231.5 |   421.17 |      415 |            3178 |
|    0 |       371 | True      |   2052.5 |   421.17 |      415 |            2882 |
|    0 |       372 | True      |    410.5 |  1263.5  |      415 |            3432 |
|    0 |       373 | True      |   1231.5 |  1263.5  |      415 |            4095 |
|    0 |       374 | True      |   2052.5 |  1263.5  |      415 |            3708 |
|    0 |       375 | True      |    410.5 |  2105.83 |      415 |            2357 |
|    0 |       376 | True      |   1231.5 |  2105.83 |      415 |            2813 |
|    0 |       377 | True      |   2052.5 |  2105.83 |      415 |            2508 |
|    0 |       378 | True      |    410.5 |   421.17 |      425 |            2638 |
|    0 |       379 | True      |   1231.5 |   421.17 |      425 |            3241 |
|    0 |       380 | True      |   2052.5 |   421.17 |      425 |            2948 |
|    0 |       381 | True      |    410.5 |  1263.5  |      425 |            3403 |
|    0 |       382 | True      |   1231.5 |  1263.5  |      425 |            4077 |
|    0 |       383 | True      |   2052.5 |  1263.5  |      425 |            3714 |
|    0 |       384 | True      |    410.5 |  2105.83 |      425 |            2270 |
|    0 |       385 | True      |   1231.5 |  2105.83 |      425 |            2704 |
|    0 |       386 | True      |   2052.5 |  2105.83 |      425 |            2439 |
|    0 |       387 | True      |    410.5 |   421.17 |      435 |            2670 |
|    0 |       388 | True      |   1231.5 |   421.17 |      435 |            3307 |
|    0 |       389 | True      |   2052.5 |   421.17 |      435 |            3010 |
|    0 |       390 | True      |    410.5 |  1263.5  |      435 |            3362 |
|    0 |       391 | True      |   1231.5 |  1263.5  |      435 |            4059 |
|    0 |       392 | True      |   2052.5 |  1263.5  |      435 |            3699 |
|    0 |       393 | True      |    410.5 |  2105.83 |      435 |            2190 |
|    0 |       394 | True      |   1231.5 |  2105.83 |      435 |            2606 |
|    0 |       395 | True      |   2052.5 |  2105.83 |      435 |            2354 |
|    0 |       396 | True      |    410.5 |   421.17 |      445 |            2708 |
|    0 |       397 | True      |   1231.5 |   421.17 |      445 |            3360 |
|    0 |       398 | True      |   2052.5 |   421.17 |      445 |            3040 |
|    0 |       399 | True      |    410.5 |  1263.5  |      445 |            3322 |
|    0 |       400 | True      |   1231.5 |  1263.5  |      445 |            4018 |
|    0 |       401 | True      |   2052.5 |  1263.5  |      445 |            3645 |
|    0 |       402 | True      |    410.5 |  2105.83 |      445 |            2110 |
|    0 |       403 | True      |   1231.5 |  2105.83 |      445 |            2504 |
|    0 |       404 | True      |   2052.5 |  2105.83 |      445 |            2249 |
|    0 |       405 | True      |    410.5 |   421.17 |      455 |            2800 |
|    0 |       406 | True      |   1231.5 |   421.17 |      455 |            3479 |
|    0 |       407 | True      |   2052.5 |   421.17 |      455 |            3153 |
|    0 |       408 | True      |    410.5 |  1263.5  |      455 |            3356 |
|    0 |       409 | True      |   1231.5 |  1263.5  |      455 |            4072 |
|    0 |       410 | True      |   2052.5 |  1263.5  |      455 |            3702 |
|    0 |       411 | True      |    410.5 |  2105.83 |      455 |            2081 |
|    0 |       412 | True      |   1231.5 |  2105.83 |      455 |            2465 |
|    0 |       413 | True      |   2052.5 |  2105.83 |      455 |            2222 |
|    0 |       414 | True      |    410.5 |   421.17 |      465 |            2873 |
|    0 |       415 | True      |   1231.5 |   421.17 |      465 |            3551 |
|    0 |       416 | True      |   2052.5 |   421.17 |      465 |            3206 |
|    0 |       417 | True      |    410.5 |  1263.5  |      465 |            3389 |
|    0 |       418 | True      |   1231.5 |  1263.5  |      465 |            4101 |
|    0 |       419 | True      |   2052.5 |  1263.5  |      465 |            3714 |
|    0 |       420 | True      |    410.5 |  2105.83 |      465 |            2048 |
|    0 |       421 | True      |   1231.5 |  2105.83 |      465 |            2429 |
|    0 |       422 | True      |   2052.5 |  2105.83 |      465 |            2187 |
|    0 |       423 | True      |    410.5 |   421.17 |      475 |            2890 |
|    0 |       424 | True      |   1231.5 |   421.17 |      475 |            3582 |
|    0 |       425 | True      |   2052.5 |   421.17 |      475 |            3235 |
|    0 |       426 | True      |    410.5 |  1263.5  |      475 |            3345 |
|    0 |       427 | True      |   1231.5 |  1263.5  |      475 |            4067 |
|    0 |       428 | True      |   2052.5 |  1263.5  |      475 |            3683 |
|    0 |       429 | True      |    410.5 |  2105.83 |      475 |            2000 |
|    0 |       430 | True      |   1231.5 |  2105.83 |      475 |            2382 |
|    0 |       431 | True      |   2052.5 |  2105.83 |      475 |            2149 |
|    0 |       432 | True      |    410.5 |   421.17 |      485 |            2829 |
|    0 |       433 | True      |   1231.5 |   421.17 |      485 |            3514 |
|    0 |       434 | True      |   2052.5 |   421.17 |      485 |            3165 |
|    0 |       435 | True      |    410.5 |  1263.5  |      485 |            3224 |
|    0 |       436 | True      |   1231.5 |  1263.5  |      485 |            3928 |
|    0 |       437 | True      |   2052.5 |  1263.5  |      485 |            3543 |
|    0 |       438 | True      |    410.5 |  2105.83 |      485 |            1944 |
|    0 |       439 | True      |   1231.5 |  2105.83 |      485 |            2315 |
|    0 |       440 | True      |   2052.5 |  2105.83 |      485 |            2080 |
|    0 |       441 | True      |    410.5 |   421.17 |      495 |            2757 |
|    0 |       442 | True      |   1231.5 |   421.17 |      495 |            3448 |
|    0 |       443 | True      |   2052.5 |   421.17 |      495 |            3107 |
|    0 |       444 | True      |    410.5 |  1263.5  |      495 |            3106 |
|    0 |       445 | True      |   1231.5 |  1263.5  |      495 |            3818 |
|    0 |       446 | True      |   2052.5 |  1263.5  |      495 |            3448 |
|    0 |       447 | True      |    410.5 |  2105.83 |      495 |            1901 |
|    0 |       448 | True      |   1231.5 |  2105.83 |      495 |            2279 |
|    0 |       449 | True      |   2052.5 |  2105.83 |      495 |            2050 |
|    0 |       450 | True      |    410.5 |   421.17 |      505 |            2760 |
|    0 |       451 | True      |   1231.5 |   421.17 |      505 |            3428 |
|    0 |       452 | True      |   2052.5 |   421.17 |      505 |            3094 |
|    0 |       453 | True      |    410.5 |  1263.5  |      505 |            3093 |
|    0 |       454 | True      |   1231.5 |  1263.5  |      505 |            3782 |
|    0 |       455 | True      |   2052.5 |  1263.5  |      505 |            3423 |
|    0 |       456 | True      |    410.5 |  2105.83 |      505 |            1930 |
|    0 |       457 | True      |   1231.5 |  2105.83 |      505 |            2305 |
|    0 |       458 | True      |   2052.5 |  2105.83 |      505 |            2067 |
|    0 |       459 | True      |    410.5 |   421.17 |      515 |            2695 |
|    0 |       460 | True      |   1231.5 |   421.17 |      515 |            3339 |
|    0 |       461 | True      |   2052.5 |   421.17 |      515 |            3018 |
|    0 |       462 | True      |    410.5 |  1263.5  |      515 |            3012 |
|    0 |       463 | True      |   1231.5 |  1263.5  |      515 |            3683 |
|    0 |       464 | True      |   2052.5 |  1263.5  |      515 |            3338 |
|    0 |       465 | True      |    410.5 |  2105.83 |      515 |            1910 |
|    0 |       466 | True      |   1231.5 |  2105.83 |      515 |            2296 |
|    0 |       467 | True      |   2052.5 |  2105.83 |      515 |            2049 |
|    0 |       468 | True      |    410.5 |   421.17 |      525 |            2675 |
|    0 |       469 | True      |   1231.5 |   421.17 |      525 |            3314 |
|    0 |       470 | True      |   2052.5 |   421.17 |      525 |            3006 |
|    0 |       471 | True      |    410.5 |  1263.5  |      525 |            2960 |
|    0 |       472 | True      |   1231.5 |  1263.5  |      525 |            3623 |
|    0 |       473 | True      |   2052.5 |  1263.5  |      525 |            3294 |
|    0 |       474 | True      |    410.5 |  2105.83 |      525 |            1891 |
|    0 |       475 | True      |   1231.5 |  2105.83 |      525 |            2281 |
|    0 |       476 | True      |   2052.5 |  2105.83 |      525 |            2033 |
|    0 |       477 | True      |    410.5 |   421.17 |      535 |            2593 |
|    0 |       478 | True      |   1231.5 |   421.17 |      535 |            3249 |
|    0 |       479 | True      |   2052.5 |   421.17 |      535 |            2950 |
|    0 |       480 | True      |    410.5 |  1263.5  |      535 |            2877 |
|    0 |       481 | True      |   1231.5 |  1263.5  |      535 |            3554 |
|    0 |       482 | True      |   2052.5 |  1263.5  |      535 |            3231 |
|    0 |       483 | True      |    410.5 |  2105.83 |      535 |            1883 |
|    0 |       484 | True      |   1231.5 |  2105.83 |      535 |            2288 |
|    0 |       485 | True      |   2052.5 |  2105.83 |      535 |            2038 |
|    0 |       486 | True      |    410.5 |   421.17 |      545 |            2585 |
|    0 |       487 | True      |   1231.5 |   421.17 |      545 |            3260 |
|    0 |       488 | True      |   2052.5 |   421.17 |      545 |            2969 |
|    0 |       489 | True      |    410.5 |  1263.5  |      545 |            2850 |
|    0 |       490 | True      |   1231.5 |  1263.5  |      545 |            3545 |
|    0 |       491 | True      |   2052.5 |  1263.5  |      545 |            3233 |
|    0 |       492 | True      |    410.5 |  2105.83 |      545 |            1882 |
|    0 |       493 | True      |   1231.5 |  2105.83 |      545 |            2301 |
|    0 |       494 | True      |   2052.5 |  2105.83 |      545 |            2062 |
|    0 |       495 | True      |    410.5 |   421.17 |      555 |            2529 |
|    0 |       496 | True      |   1231.5 |   421.17 |      555 |            3191 |
|    0 |       497 | True      |   2052.5 |   421.17 |      555 |            2907 |
|    0 |       498 | True      |    410.5 |  1263.5  |      555 |            2814 |
|    0 |       499 | True      |   1231.5 |  1263.5  |      555 |            3501 |
|    0 |       500 | True      |   2052.5 |  1263.5  |      555 |            3190 |
|    0 |       501 | True      |    410.5 |  2105.83 |      555 |            1933 |
|    0 |       502 | True      |   1231.5 |  2105.83 |      555 |            2370 |
|    0 |       503 | True      |   2052.5 |  2105.83 |      555 |            2126 |
|    0 |       504 | True      |    410.5 |   421.17 |      565 |            2459 |
|    0 |       505 | True      |   1231.5 |   421.17 |      565 |            3100 |
|    0 |       506 | True      |   2052.5 |   421.17 |      565 |            2818 |
|    0 |       507 | True      |    410.5 |  1263.5  |      565 |            2744 |
|    0 |       508 | True      |   1231.5 |  1263.5  |      565 |            3419 |
|    0 |       509 | True      |   2052.5 |  1263.5  |      565 |            3102 |
|    0 |       510 | True      |    410.5 |  2105.83 |      565 |            1920 |
|    0 |       511 | True      |   1231.5 |  2105.83 |      565 |            2374 |
|    0 |       512 | True      |   2052.5 |  2105.83 |      565 |            2115 |
|    0 |       513 | True      |    410.5 |   421.17 |      575 |            2434 |
|    0 |       514 | True      |   1231.5 |   421.17 |      575 |            3071 |
|    0 |       515 | True      |   2052.5 |   421.17 |      575 |            2792 |
|    0 |       516 | True      |    410.5 |  1263.5  |      575 |            2782 |
|    0 |       517 | True      |   1231.5 |  1263.5  |      575 |            3466 |
|    0 |       518 | True      |   2052.5 |  1263.5  |      575 |            3141 |
|    0 |       519 | True      |    410.5 |  2105.83 |      575 |            1986 |
|    0 |       520 | True      |   1231.5 |  2105.83 |      575 |            2479 |
|    0 |       521 | True      |   2052.5 |  2105.83 |      575 |            2211 |
|    0 |       522 | True      |    410.5 |   421.17 |      585 |            2396 |
|    0 |       523 | True      |   1231.5 |   421.17 |      585 |            3036 |
|    0 |       524 | True      |   2052.5 |   421.17 |      585 |            2759 |
|    0 |       525 | True      |    410.5 |  1263.5  |      585 |            2796 |
|    0 |       526 | True      |   1231.5 |  1263.5  |      585 |            3491 |
|    0 |       527 | True      |   2052.5 |  1263.5  |      585 |            3172 |
|    0 |       528 | True      |    410.5 |  2105.83 |      585 |            2020 |
|    0 |       529 | True      |   1231.5 |  2105.83 |      585 |            2533 |
|    0 |       530 | True      |   2052.5 |  2105.83 |      585 |            2269 |
|    0 |       531 | True      |    410.5 |   421.17 |      595 |            2435 |
|    0 |       532 | True      |   1231.5 |   421.17 |      595 |            3080 |
|    0 |       533 | True      |   2052.5 |   421.17 |      595 |            2818 |
|    0 |       534 | True      |    410.5 |  1263.5  |      595 |            2905 |
|    0 |       535 | True      |   1231.5 |  1263.5  |      595 |            3623 |
|    0 |       536 | True      |   2052.5 |  1263.5  |      595 |            3318 |
|    0 |       537 | True      |    410.5 |  2105.83 |      595 |            2122 |
|    0 |       538 | True      |   1231.5 |  2105.83 |      595 |            2663 |
|    0 |       539 | True      |   2052.5 |  2105.83 |      595 |            2411 |
|    0 |       540 | True      |    410.5 |   421.17 |      605 |            2426 |
|    0 |       541 | True      |   1231.5 |   421.17 |      605 |            3064 |
|    0 |       542 | True      |   2052.5 |   421.17 |      605 |            2796 |
|    0 |       543 | True      |    410.5 |  1263.5  |      605 |            2940 |
|    0 |       544 | True      |   1231.5 |  1263.5  |      605 |            3663 |
|    0 |       545 | True      |   2052.5 |  1263.5  |      605 |            3350 |
|    0 |       546 | True      |    410.5 |  2105.83 |      605 |            2184 |
|    0 |       547 | True      |   1231.5 |  2105.83 |      605 |            2729 |
|    0 |       548 | True      |   2052.5 |  2105.83 |      605 |            2461 |
|    0 |       549 | True      |    410.5 |   421.17 |      615 |            2478 |
|    0 |       550 | True      |   1231.5 |   421.17 |      615 |            3096 |
|    0 |       551 | True      |   2052.5 |   421.17 |      615 |            2799 |
|    0 |       552 | True      |    410.5 |  1263.5  |      615 |            3013 |
|    0 |       553 | True      |   1231.5 |  1263.5  |      615 |            3731 |
|    0 |       554 | True      |   2052.5 |  1263.5  |      615 |            3382 |
|    0 |       555 | True      |    410.5 |  2105.83 |      615 |            2259 |
|    0 |       556 | True      |   1231.5 |  2105.83 |      615 |            2810 |
|    0 |       557 | True      |   2052.5 |  2105.83 |      615 |            2515 |
|    0 |       558 | True      |    410.5 |   421.17 |      625 |            2427 |
|    0 |       559 | True      |   1231.5 |   421.17 |      625 |            3011 |
|    0 |       560 | True      |   2052.5 |   421.17 |      625 |            2699 |
|    0 |       561 | True      |    410.5 |  1263.5  |      625 |            2962 |
|    0 |       562 | True      |   1231.5 |  1263.5  |      625 |            3654 |
|    0 |       563 | True      |   2052.5 |  1263.5  |      625 |            3297 |
|    0 |       564 | True      |    410.5 |  2105.83 |      625 |            2263 |
|    0 |       565 | True      |   1231.5 |  2105.83 |      625 |            2817 |
|    0 |       566 | True      |   2052.5 |  2105.83 |      625 |            2516 |
|    0 |       567 | True      |    410.5 |   421.17 |      635 |            2349 |
|    0 |       568 | True      |   1231.5 |   421.17 |      635 |            2883 |
|    0 |       569 | True      |   2052.5 |   421.17 |      635 |            2577 |
|    0 |       570 | True      |    410.5 |  1263.5  |      635 |            2875 |
|    0 |       571 | True      |   1231.5 |  1263.5  |      635 |            3526 |
|    0 |       572 | True      |   2052.5 |  1263.5  |      635 |            3180 |
|    0 |       573 | True      |    410.5 |  2105.83 |      635 |            2243 |
|    0 |       574 | True      |   1231.5 |  2105.83 |      635 |            2790 |
|    0 |       575 | True      |   2052.5 |  2105.83 |      635 |            2492 |
|    0 |       576 | True      |    410.5 |   421.17 |      645 |            2282 |
|    0 |       577 | True      |   1231.5 |   421.17 |      645 |            2801 |
|    0 |       578 | True      |   2052.5 |   421.17 |      645 |            2503 |
|    0 |       579 | True      |    410.5 |  1263.5  |      645 |            2882 |
|    0 |       580 | True      |   1231.5 |  1263.5  |      645 |            3539 |
|    0 |       581 | True      |   2052.5 |  1263.5  |      645 |            3192 |
|    0 |       582 | True      |    410.5 |  2105.83 |      645 |            2315 |
|    0 |       583 | True      |   1231.5 |  2105.83 |      645 |            2882 |
|    0 |       584 | True      |   2052.5 |  2105.83 |      645 |            2571 |
|    0 |       585 | True      |    410.5 |   421.17 |      655 |            2302 |
|    0 |       586 | True      |   1231.5 |   421.17 |      655 |            2828 |
|    0 |       587 | True      |   2052.5 |   421.17 |      655 |            2509 |
|    0 |       588 | True      |    410.5 |  1263.5  |      655 |            2979 |
|    0 |       589 | True      |   1231.5 |  1263.5  |      655 |            3677 |
|    0 |       590 | True      |   2052.5 |  1263.5  |      655 |            3297 |
|    0 |       591 | True      |    410.5 |  2105.83 |      655 |            2411 |
|    0 |       592 | True      |   1231.5 |  2105.83 |      655 |            3019 |
|    0 |       593 | True      |   2052.5 |  2105.83 |      655 |            2672 |
|    0 |       594 | True      |    410.5 |   421.17 |      665 |            2347 |
|    0 |       595 | True      |   1231.5 |   421.17 |      665 |            2882 |
|    0 |       596 | True      |   2052.5 |   421.17 |      665 |            2551 |
|    0 |       597 | True      |    410.5 |  1263.5  |      665 |            3109 |
|    0 |       598 | True      |   1231.5 |  1263.5  |      665 |            3837 |
|    0 |       599 | True      |   2052.5 |  1263.5  |      665 |            3431 |
|    0 |       600 | True      |    410.5 |  2105.83 |      665 |            2551 |
|    0 |       601 | True      |   1231.5 |  2105.83 |      665 |            3180 |
|    0 |       602 | True      |   2052.5 |  2105.83 |      665 |            2807 |
|    0 |       603 | True      |    410.5 |   421.17 |      675 |            2344 |
|    0 |       604 | True      |   1231.5 |   421.17 |      675 |            2883 |
|    0 |       605 | True      |   2052.5 |   421.17 |      675 |            2557 |
|    0 |       606 | True      |    410.5 |  1263.5  |      675 |            3123 |
|    0 |       607 | True      |   1231.5 |  1263.5  |      675 |            3867 |
|    0 |       608 | True      |   2052.5 |  1263.5  |      675 |            3461 |
|    0 |       609 | True      |    410.5 |  2105.83 |      675 |            2571 |
|    0 |       610 | True      |   1231.5 |  2105.83 |      675 |            3216 |
|    0 |       611 | True      |   2052.5 |  2105.83 |      675 |            2844 |
|    0 |       612 | True      |    410.5 |   421.17 |      685 |            2333 |
|    0 |       613 | True      |   1231.5 |   421.17 |      685 |            2838 |
|    0 |       614 | True      |   2052.5 |   421.17 |      685 |            2522 |
|    0 |       615 | True      |    410.5 |  1263.5  |      685 |            3159 |
|    0 |       616 | True      |   1231.5 |  1263.5  |      685 |            3875 |
|    0 |       617 | True      |   2052.5 |  1263.5  |      685 |            3469 |
|    0 |       618 | True      |    410.5 |  2105.83 |      685 |            2616 |
|    0 |       619 | True      |   1231.5 |  2105.83 |      685 |            3241 |
|    0 |       620 | True      |   2052.5 |  2105.83 |      685 |            2875 |
|    0 |       621 | True      |    410.5 |   421.17 |      695 |            2332 |
|    0 |       622 | True      |   1231.5 |   421.17 |      695 |            2832 |
|    0 |       623 | True      |   2052.5 |   421.17 |      695 |            2500 |
|    0 |       624 | True      |    410.5 |  1263.5  |      695 |            3198 |
|    0 |       625 | True      |   1231.5 |  1263.5  |      695 |            3951 |
|    0 |       626 | True      |   2052.5 |  1263.5  |      695 |            3530 |
|    0 |       627 | True      |    410.5 |  2105.83 |      695 |            2627 |
|    0 |       628 | True      |   1231.5 |  2105.83 |      695 |            3292 |
|    0 |       629 | True      |   2052.5 |  2105.83 |      695 |            2921 |
|    0 |       630 | True      |    410.5 |   421.17 |      705 |            2341 |
|    0 |       631 | True      |   1231.5 |   421.17 |      705 |            2811 |
|    0 |       632 | True      |   2052.5 |   421.17 |      705 |            2479 |
|    0 |       633 | True      |    410.5 |  1263.5  |      705 |            3306 |
|    0 |       634 | True      |   1231.5 |  1263.5  |      705 |            4070 |
|    0 |       635 | True      |   2052.5 |  1263.5  |      705 |            3644 |
|    0 |       636 | True      |    410.5 |  2105.83 |      705 |            2700 |
|    0 |       637 | True      |   1231.5 |  2105.83 |      705 |            3385 |
|    0 |       638 | True      |   2052.5 |  2105.83 |      705 |            3013 |
|    0 |       639 | True      |    410.5 |   421.17 |      715 |            1563 |
|    0 |       640 | True      |   1231.5 |   421.17 |      715 |            1880 |
|    0 |       641 | True      |   2052.5 |   421.17 |      715 |            1658 |
|    0 |       642 | True      |    410.5 |  1263.5  |      715 |            2232 |
|    0 |       643 | True      |   1231.5 |  1263.5  |      715 |            2765 |
|    0 |       644 | True      |   2052.5 |  1263.5  |      715 |            2480 |
|    0 |       645 | True      |    410.5 |  2105.83 |      715 |            1818 |
|    0 |       646 | True      |   1231.5 |  2105.83 |      715 |            2294 |
|    0 |       647 | True      |   2052.5 |  2105.83 |      715 |            2045 |
+------+-----------+-----------+----------+----------+----------+-----------------+


Timing information for reference profile formation
+-------------------+---------------+
| Read time         | 59.99 seconds |
| Extract time      | 0.48 seconds  |
| Pre-process time  | 0.08 seconds  |
| Process time      | 30.05 seconds |
| Post-process time | 0.00 seconds  |
| Total time        | 91.21 seconds |
+-------------------+---------------+

================================================================================

Integrating reflections

 Split 109 reflections overlapping job boundaries

Memory situation report:
  Available system memory (excluding swap)          : 14.4 GB
  Available swap memory                             :  6.0 GB
  Available system memory (including swap)          : 20.4 GB
  Maximum memory for processing (including swap)    : 18.3 GB
  Maximum memory for processing (excluding swap)    : 12.9 GB
  Memory required per process                       :  0.0 GB
  no memory ulimit set

Processing reflections in the following blocks of images:

 block_size: Auto 

+-----+---------+--------------+------------+--------------+------------+-----------------+
|   # |   Group |   Frame From |   Frame To |   Angle From |   Angle To |   # Reflections |
|-----+---------+--------------+------------+--------------+------------+-----------------|
|   0 |       0 |            1 |        183 |            0 |       91.5 |           93302 |
|   1 |       0 |          181 |        363 |           90 |      181.5 |           91597 |
|   2 |       0 |          361 |        543 |          180 |      271.5 |           91203 |
|   3 |       0 |          541 |        720 |          270 |      360   |           92166 |
+-----+---------+--------------+------------+--------------+------------+-----------------+

 Using multiprocessing with 4 parallel job(s)


 Frames: 0 -> 183

 Number of reflections
  Partial:     1209
  Full:        92093
  In ice ring: 0
  Integrate:   93302
  Total:       93302


 Frames: 180 -> 363

 Number of reflections
  Partial:     40
  Full:        91557
  In ice ring: 0
  Integrate:   91597
  Total:       91597


 Frames: 360 -> 543

 Number of reflections
  Partial:     50
  Full:        91153
  In ice ring: 0
  Integrate:   91203
  Total:       91203


 Frames: 540 -> 720

 Number of reflections
  Partial:     1277
  Full:        90889
  In ice ring: 0
  Integrate:   92166
  Total:       92166


 Summary vs image number
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+
|   ID |   Image |   # full |   # part |   # over |   # ice |   # sum |   # prf |   Ibg |   I/sigI |   I/sigI |   CC prf |   RMSD XY |
|      |         |          |          |          |         |         |         |       |    (sum) |    (prf) |          |           |
|------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------|
|    0 |       1 |      297 |     1177 |        0 |       0 |    1269 |     460 |  0.76 |     3.87 |     9.84 |     0.75 |      0.64 |
|    0 |       2 |      475 |       14 |        0 |       0 |     419 |     413 |  0.73 |     7.05 |     7.13 |     0.73 |      0.43 |
|    0 |       3 |      493 |        4 |        0 |       0 |     427 |     423 |  0.71 |     6.43 |     6.54 |     0.72 |      0.43 |
|    0 |       4 |      508 |        1 |        0 |       0 |     426 |     422 |  0.71 |     7.34 |     7.41 |     0.72 |      0.43 |
|    0 |       5 |      529 |        1 |        0 |       0 |     453 |     449 |  0.77 |     8.45 |     8.51 |     0.73 |      0.43 |
|    0 |       6 |      508 |        1 |        0 |       0 |     442 |     438 |  0.65 |     6.62 |     6.64 |     0.72 |      0.45 |
|    0 |       7 |      534 |        1 |        0 |       0 |     456 |     456 |  0.78 |     8.78 |     8.76 |     0.72 |      0.42 |
|    0 |       8 |      550 |        0 |        0 |       0 |     460 |     453 |  0.74 |     7.71 |     7.91 |     0.73 |      0.43 |
|    0 |       9 |      500 |        1 |        0 |       0 |     423 |     420 |  0.66 |     7.72 |     7.76 |     0.71 |      0.41 |
|    0 |      10 |      481 |        0 |        0 |       0 |     409 |     402 |  0.7  |     8.71 |     8.84 |     0.72 |      0.44 |
|    0 |      11 |      470 |        1 |        0 |       0 |     400 |     396 |  0.73 |     7.4  |     7.48 |     0.72 |      0.43 |
|    0 |      12 |      518 |        0 |        0 |       0 |     444 |     442 |  0.74 |     7.87 |     7.9  |     0.73 |      0.43 |
|    0 |      13 |      511 |        0 |        0 |       0 |     430 |     426 |  0.75 |     7.34 |     7.42 |     0.73 |      0.44 |
|    0 |      14 |      503 |        0 |        0 |       0 |     435 |     430 |  0.76 |     8.99 |     9.05 |     0.73 |      0.42 |
|    0 |      15 |      500 |        0 |        0 |       0 |     427 |     423 |  0.69 |     6.9  |     6.94 |     0.71 |      0.46 |
|    0 |      16 |      519 |        0 |        0 |       0 |     444 |     444 |  0.7  |     6.9  |     6.97 |     0.72 |      0.46 |
|    0 |      17 |      525 |        0 |        0 |       0 |     445 |     441 |  0.65 |     6.54 |     6.59 |     0.72 |      0.43 |
|    0 |      18 |      513 |        0 |        0 |       0 |     436 |     428 |  0.74 |     6.92 |     7.06 |     0.73 |      0.41 |
|    0 |      19 |      490 |        0 |        0 |       0 |     403 |     401 |  0.71 |     6.71 |     6.74 |     0.72 |      0.43 |
|    0 |      20 |      531 |        0 |        0 |       0 |     455 |     452 |  0.72 |     7.69 |     7.77 |     0.72 |      0.43 |
|    0 |      21 |      512 |        0 |        0 |       0 |     433 |     427 |  0.73 |     8.29 |     8.47 |     0.72 |      0.43 |
|    0 |      22 |      515 |        0 |        0 |       0 |     439 |     437 |  0.76 |     7.49 |     7.56 |     0.73 |      0.43 |
|    0 |      23 |      485 |        0 |        0 |       0 |     422 |     417 |  0.64 |     7.05 |     7.09 |     0.72 |      0.44 |
|    0 |      24 |      498 |        0 |        0 |       0 |     414 |     412 |  0.7  |     7.53 |     7.57 |     0.72 |      0.44 |
|    0 |      25 |      511 |        0 |        0 |       0 |     439 |     432 |  0.63 |     6.56 |     6.66 |     0.71 |      0.44 |
|    0 |      26 |      536 |        0 |        0 |       0 |     469 |     464 |  0.68 |     7.75 |     7.87 |     0.72 |      0.44 |
|    0 |      27 |      498 |        0 |        0 |       0 |     434 |     432 |  0.75 |     8.13 |     8.2  |     0.73 |      0.44 |
|    0 |      28 |      505 |        0 |        0 |       0 |     432 |     430 |  0.69 |     7.47 |     7.48 |     0.71 |      0.43 |
|    0 |      29 |      525 |        0 |        0 |       0 |     456 |     451 |  0.76 |     9.13 |     9.28 |     0.72 |      0.44 |
|    0 |      30 |      495 |        0 |        0 |       0 |     427 |     424 |  0.73 |     7.34 |     7.46 |     0.72 |      0.45 |
|    0 |      31 |      522 |        0 |        0 |       0 |     440 |     436 |  0.69 |     7.46 |     7.48 |     0.72 |      0.44 |
|    0 |      32 |      540 |        0 |        0 |       0 |     445 |     442 |  0.76 |     7.97 |     8.01 |     0.73 |      0.43 |
|    0 |      33 |      480 |        0 |        0 |       0 |     411 |     409 |  0.66 |     6.92 |     6.95 |     0.72 |      0.42 |
|    0 |      34 |      517 |        0 |        0 |       0 |     448 |     439 |  0.66 |     6.69 |     6.8  |     0.72 |      0.43 |
|    0 |      35 |      513 |        0 |        0 |       0 |     444 |     439 |  0.65 |     6.11 |     6.19 |     0.72 |      0.46 |
|    0 |      36 |      479 |        0 |        0 |       0 |     410 |     408 |  0.65 |     7.21 |     7.25 |     0.72 |      0.45 |
|    0 |      37 |      505 |        0 |        0 |       0 |     428 |     423 |  0.67 |     6.29 |     6.33 |     0.71 |      0.47 |
|    0 |      38 |      516 |        0 |        0 |       0 |     424 |     419 |  0.65 |     6.6  |     6.71 |     0.72 |      0.45 |
|    0 |      39 |      489 |        0 |        0 |       0 |     406 |     403 |  0.66 |     7.09 |     7.12 |     0.72 |      0.45 |
|    0 |      40 |      533 |        0 |        0 |       0 |     465 |     461 |  0.76 |     7.81 |     7.96 |     0.73 |      0.45 |
|    0 |      41 |      490 |        0 |        0 |       0 |     424 |     421 |  0.75 |     8.37 |     8.46 |     0.73 |      0.44 |
|    0 |      42 |      524 |        0 |        0 |       0 |     437 |     434 |  0.75 |     7.08 |     7.17 |     0.72 |      0.41 |
|    0 |      43 |      495 |        0 |        0 |       0 |     432 |     431 |  0.66 |     7.28 |     7.24 |     0.73 |      0.44 |
|    0 |      44 |      500 |        0 |        0 |       0 |     416 |     413 |  0.69 |     7.41 |     7.46 |     0.72 |      0.44 |
|    0 |      45 |      533 |        0 |        0 |       0 |     450 |     442 |  0.67 |     6.93 |     7.01 |     0.72 |      0.47 |
|    0 |      46 |      476 |        0 |        0 |       0 |     414 |     410 |  0.69 |     7.83 |     7.92 |     0.71 |      0.45 |
|    0 |      47 |      527 |        0 |        0 |       0 |     452 |     445 |  0.72 |     7.28 |     7.43 |     0.72 |      0.46 |
|    0 |      48 |      489 |        0 |        0 |       0 |     423 |     419 |  0.72 |     7.73 |     7.86 |     0.73 |      0.42 |
|    0 |      49 |      520 |        0 |        0 |       0 |     446 |     442 |  0.64 |     6.89 |     6.94 |     0.7  |      0.47 |
|    0 |      50 |      510 |        0 |        0 |       0 |     440 |     439 |  0.72 |     7.78 |     7.79 |     0.73 |      0.41 |
|    0 |      51 |      524 |        0 |        0 |       0 |     437 |     432 |  0.65 |     6.61 |     6.66 |     0.7  |      0.47 |
|    0 |      52 |      494 |        0 |        0 |       0 |     423 |     422 |  0.68 |     7.83 |     7.86 |     0.73 |      0.41 |
|    0 |      53 |      530 |        0 |        0 |       0 |     455 |     449 |  0.68 |     7.5  |     7.56 |     0.71 |      0.46 |
|    0 |      54 |      495 |        0 |        0 |       0 |     417 |     413 |  0.71 |     7.77 |     7.89 |     0.74 |      0.41 |
|    0 |      55 |      532 |        0 |        0 |       0 |     453 |     446 |  0.64 |     6.74 |     6.83 |     0.71 |      0.46 |
|    0 |      56 |      488 |        0 |        0 |       0 |     411 |     408 |  0.71 |     6.89 |     7    |     0.72 |      0.44 |
|    0 |      57 |      526 |        0 |        0 |       0 |     441 |     435 |  0.66 |     6.23 |     6.33 |     0.71 |      0.46 |
|    0 |      58 |      491 |        0 |        0 |       0 |     434 |     430 |  0.71 |     7.68 |     7.79 |     0.73 |      0.42 |
|    0 |      59 |      522 |        0 |        0 |       0 |     446 |     444 |  0.63 |     6.81 |     6.79 |     0.72 |      0.44 |
|    0 |      60 |      487 |        0 |        0 |       0 |     398 |     392 |  0.73 |     7.95 |     8.1  |     0.73 |      0.42 |
|    0 |      61 |      533 |        0 |        0 |       0 |     461 |     456 |  0.69 |     6.74 |     6.81 |     0.72 |      0.43 |
|    0 |      62 |      471 |        0 |        0 |       0 |     405 |     399 |  0.64 |     6.49 |     6.58 |     0.72 |      0.45 |
|    0 |      63 |      530 |        0 |        0 |       0 |     452 |     447 |  0.73 |     7.23 |     7.27 |     0.73 |      0.43 |
|    0 |      64 |      502 |        0 |        0 |       0 |     417 |     411 |  0.69 |     7.8  |     7.88 |     0.72 |      0.46 |
|    0 |      65 |      506 |        0 |        0 |       0 |     434 |     428 |  0.67 |     6.85 |     6.92 |     0.72 |      0.45 |
|    0 |      66 |      525 |        0 |        0 |       0 |     447 |     443 |  0.7  |     7.59 |     7.68 |     0.74 |      0.46 |
|    0 |      67 |      489 |        0 |        0 |       0 |     423 |     419 |  0.7  |     7.52 |     7.58 |     0.71 |      0.47 |
|    0 |      68 |      519 |        0 |        0 |       0 |     441 |     436 |  0.69 |     7.87 |     7.95 |     0.73 |      0.42 |
|    0 |      69 |      525 |        0 |        0 |       0 |     441 |     436 |  0.68 |     6.66 |     6.75 |     0.72 |      0.45 |
|    0 |      70 |      472 |        0 |        0 |       0 |     406 |     406 |  0.69 |     7.16 |     7.12 |     0.73 |      0.44 |
|    0 |      71 |      527 |        0 |        0 |       0 |     450 |     443 |  0.72 |     8.43 |     8.49 |     0.73 |      0.42 |
|    0 |      72 |      501 |        0 |        0 |       0 |     438 |     433 |  0.61 |     6.56 |     6.58 |     0.71 |      0.45 |
|    0 |      73 |      533 |        0 |        0 |       0 |     452 |     449 |  0.7  |     7.02 |     7.04 |     0.73 |      0.43 |
|    0 |      74 |      523 |        0 |        0 |       0 |     441 |     436 |  0.66 |     6.48 |     6.63 |     0.72 |      0.43 |
|    0 |      75 |      477 |        0 |        0 |       0 |     417 |     413 |  0.65 |     6.3  |     6.38 |     0.72 |      0.43 |
|    0 |      76 |      555 |        0 |        0 |       0 |     469 |     466 |  0.64 |     6.93 |     7.02 |     0.72 |      0.45 |
|    0 |      77 |      484 |        0 |        0 |       0 |     406 |     404 |  0.69 |     7.17 |     7.22 |     0.73 |      0.44 |
|    0 |      78 |      507 |        0 |        0 |       0 |     424 |     420 |  0.66 |     6.77 |     6.84 |     0.71 |      0.44 |
|    0 |      79 |      512 |        0 |        0 |       0 |     436 |     432 |  0.67 |     7.13 |     7.2  |     0.72 |      0.43 |
|    0 |      80 |      509 |        0 |        0 |       0 |     431 |     426 |  0.68 |     7.44 |     7.5  |     0.72 |      0.43 |
|    0 |      81 |      521 |        0 |        0 |       0 |     429 |     423 |  0.74 |     7.88 |     7.99 |     0.72 |      0.45 |
|    0 |      82 |      485 |        0 |        0 |       0 |     410 |     401 |  0.71 |     6.88 |     7.07 |     0.73 |      0.42 |
|    0 |      83 |      530 |        0 |        0 |       0 |     450 |     446 |  0.72 |     6.78 |     6.89 |     0.73 |      0.44 |
|    0 |      84 |      493 |        0 |        0 |       0 |     427 |     424 |  0.68 |     7.08 |     7.18 |     0.72 |      0.43 |
|    0 |      85 |      496 |        0 |        0 |       0 |     414 |     410 |  0.63 |     6.55 |     6.62 |     0.73 |      0.4  |
|    0 |      86 |      498 |        0 |        0 |       0 |     421 |     418 |  0.65 |     6.96 |     7.02 |     0.73 |      0.45 |
|    0 |      87 |      477 |        0 |        0 |       0 |     388 |     385 |  0.62 |     6.43 |     6.49 |     0.72 |      0.43 |
|    0 |      88 |      551 |        0 |        0 |       0 |     484 |     480 |  0.75 |     8.15 |     8.24 |     0.73 |      0.43 |
|    0 |      89 |      510 |        0 |        0 |       0 |     429 |     421 |  0.69 |     6.73 |     6.87 |     0.73 |      0.41 |
|    0 |      90 |      514 |        0 |        0 |       0 |     433 |     432 |  0.72 |     7.78 |     7.82 |     0.73 |      0.41 |
|    0 |      91 |      529 |        0 |        0 |       0 |     455 |     451 |  0.65 |     6.43 |     6.49 |     0.72 |      0.44 |
|    0 |      92 |      505 |        0 |        0 |       0 |     435 |     431 |  0.71 |     7.54 |     7.61 |     0.73 |      0.42 |
|    0 |      93 |      526 |        0 |        0 |       0 |     458 |     454 |  0.62 |     6.21 |     6.3  |     0.72 |      0.45 |
|    0 |      94 |      491 |        0 |        0 |       0 |     420 |     420 |  0.62 |     5.75 |     5.75 |     0.72 |      0.42 |
|    0 |      95 |      515 |        0 |        0 |       0 |     436 |     431 |  0.68 |     6.72 |     6.76 |     0.72 |      0.43 |
|    0 |      96 |      527 |        0 |        0 |       0 |     436 |     430 |  0.73 |     8.1  |     8.29 |     0.73 |      0.41 |
|    0 |      97 |      475 |        0 |        0 |       0 |     413 |     408 |  0.69 |     6.92 |     7.08 |     0.73 |      0.42 |
|    0 |      98 |      540 |        0 |        0 |       0 |     471 |     470 |  0.73 |     7.18 |     7.23 |     0.73 |      0.45 |
|    0 |      99 |      468 |        0 |        0 |       0 |     387 |     385 |  0.72 |     7.18 |     7.24 |     0.72 |      0.44 |
|    0 |     100 |      460 |        0 |        0 |       0 |     390 |     386 |  0.65 |     7.05 |     7.16 |     0.73 |      0.41 |
|    0 |     101 |      506 |        0 |        0 |       0 |     436 |     430 |  0.66 |     6.89 |     7.02 |     0.72 |      0.41 |
|    0 |     102 |      543 |        0 |        0 |       0 |     458 |     456 |  0.7  |     6.2  |     6.28 |     0.72 |      0.42 |
|    0 |     103 |      539 |        0 |        0 |       0 |     464 |     457 |  0.7  |     7.94 |     8.13 |     0.72 |      0.44 |
|    0 |     104 |      523 |        0 |        0 |       0 |     454 |     448 |  0.67 |     6.78 |     6.91 |     0.73 |      0.42 |
|    0 |     105 |      507 |        0 |        0 |       0 |     434 |     433 |  0.71 |     6.53 |     6.59 |     0.74 |      0.43 |
|    0 |     106 |      509 |        0 |        0 |       0 |     445 |     439 |  0.68 |     7.82 |     7.96 |     0.73 |      0.43 |
|    0 |     107 |      510 |        0 |        0 |       0 |     427 |     423 |  0.64 |     6.53 |     6.61 |     0.72 |      0.46 |
|    0 |     108 |      479 |        0 |        0 |       0 |     402 |     401 |  0.72 |     7.96 |     7.98 |     0.73 |      0.4  |
|    0 |     109 |      545 |        0 |        0 |       0 |     464 |     458 |  0.75 |     7.08 |     7.19 |     0.74 |      0.41 |
|    0 |     110 |      495 |        0 |        0 |       0 |     424 |     418 |  0.73 |     7.68 |     7.85 |     0.73 |      0.4  |
|    0 |     111 |      464 |        0 |        0 |       0 |     393 |     391 |  0.7  |     6.79 |     6.9  |     0.72 |      0.45 |
|    0 |     112 |      503 |        0 |        0 |       0 |     421 |     415 |  0.65 |     6.47 |     6.56 |     0.71 |      0.44 |
|    0 |     113 |      554 |        0 |        0 |       0 |     469 |     463 |  0.71 |     7.48 |     7.63 |     0.74 |      0.4  |
|    0 |     114 |      502 |        0 |        0 |       0 |     439 |     433 |  0.67 |     6.62 |     6.69 |     0.73 |      0.41 |
|    0 |     115 |      528 |        0 |        0 |       0 |     443 |     440 |  0.7  |     7.25 |     7.29 |     0.73 |      0.42 |
|    0 |     116 |      516 |        0 |        0 |       0 |     419 |     417 |  0.67 |     6.57 |     6.64 |     0.72 |      0.43 |
|    0 |     117 |      501 |        0 |        0 |       0 |     418 |     414 |  0.71 |     7.13 |     7.14 |     0.73 |      0.4  |
|    0 |     118 |      500 |        0 |        0 |       0 |     438 |     432 |  0.73 |     7.68 |     7.81 |     0.73 |      0.41 |
|    0 |     119 |      518 |        0 |        0 |       0 |     442 |     437 |  0.78 |     7.69 |     7.82 |     0.73 |      0.41 |
|    0 |     120 |      477 |        0 |        0 |       0 |     409 |     406 |  0.7  |     6.55 |     6.62 |     0.73 |      0.4  |
|    0 |     121 |      487 |        0 |        0 |       0 |     413 |     412 |  0.7  |     6.47 |     6.57 |     0.72 |      0.46 |
|    0 |     122 |      557 |        0 |        0 |       0 |     472 |     469 |  0.75 |     6.74 |     6.87 |     0.73 |      0.42 |
|    0 |     123 |      496 |        0 |        0 |       0 |     428 |     425 |  0.67 |     6.28 |     6.35 |     0.73 |      0.42 |
|    0 |     124 |      533 |        0 |        0 |       0 |     452 |     449 |  0.69 |     6.69 |     6.78 |     0.71 |      0.42 |
|    0 |     125 |      510 |        0 |        0 |       0 |     444 |     438 |  0.74 |     7.1  |     7.23 |     0.73 |      0.44 |
|    0 |     126 |      508 |        0 |        0 |       0 |     432 |     429 |  0.77 |     7.79 |     7.91 |     0.75 |      0.41 |
|    0 |     127 |      519 |        0 |        0 |       0 |     446 |     442 |  0.68 |     6.02 |     6.1  |     0.73 |      0.43 |
|    0 |     128 |      466 |        0 |        0 |       0 |     400 |     396 |  0.72 |     6.87 |     6.96 |     0.73 |      0.44 |
|    0 |     129 |      504 |        0 |        0 |       0 |     421 |     416 |  0.7  |     6.94 |     7.03 |     0.72 |      0.44 |
|    0 |     130 |      501 |        0 |        0 |       0 |     414 |     410 |  0.71 |     5.99 |     6.09 |     0.74 |      0.42 |
|    0 |     131 |      532 |        0 |        0 |       0 |     453 |     447 |  0.73 |     7    |     7.13 |     0.73 |      0.41 |
|    0 |     132 |      531 |        0 |        0 |       0 |     453 |     447 |  0.7  |     6.72 |     6.9  |     0.72 |      0.45 |
|    0 |     133 |      504 |        0 |        0 |       0 |     425 |     422 |  0.82 |     8.58 |     8.69 |     0.75 |      0.38 |
|    0 |     134 |      504 |        0 |        0 |       0 |     428 |     426 |  0.7  |     6.51 |     6.59 |     0.73 |      0.44 |
|    0 |     135 |      511 |        0 |        0 |       0 |     426 |     421 |  0.74 |     7.33 |     7.51 |     0.74 |      0.41 |
|    0 |     136 |      486 |        0 |        0 |       0 |     412 |     404 |  0.73 |     7.12 |     7.28 |     0.72 |      0.44 |
|    0 |     137 |      530 |        0 |        0 |       0 |     462 |     458 |  0.72 |     5.97 |     6.02 |     0.73 |      0.44 |
|    0 |     138 |      495 |        0 |        0 |       0 |     420 |     417 |  0.76 |     7.7  |     7.84 |     0.73 |      0.42 |
|    0 |     139 |      512 |        0 |        0 |       0 |     447 |     442 |  0.69 |     6.05 |     6.12 |     0.72 |      0.43 |
|    0 |     140 |      533 |        0 |        0 |       0 |     444 |     432 |  0.69 |     6.48 |     6.68 |     0.72 |      0.46 |
|    0 |     141 |      509 |        0 |        0 |       0 |     437 |     432 |  0.79 |     7.41 |     7.55 |     0.74 |      0.43 |
|    0 |     142 |      501 |        0 |        0 |       0 |     430 |     423 |  0.73 |     6.64 |     6.82 |     0.73 |      0.44 |
|    0 |     143 |      485 |        0 |        0 |       0 |     403 |     401 |  0.73 |     6.64 |     6.69 |     0.72 |      0.43 |
|    0 |     144 |      488 |        0 |        0 |       0 |     418 |     414 |  0.77 |     7.09 |     7.23 |     0.75 |      0.39 |
|    0 |     145 |      548 |        0 |        0 |       0 |     451 |     448 |  0.72 |     6.78 |     6.85 |     0.72 |      0.44 |
|    0 |     146 |      507 |        0 |        0 |       0 |     439 |     435 |  0.76 |     8.63 |     8.67 |     0.72 |      0.41 |
|    0 |     147 |      507 |        0 |        0 |       0 |     432 |     427 |  0.75 |     6.99 |     7.09 |     0.74 |      0.42 |
|    0 |     148 |      534 |        0 |        0 |       0 |     450 |     446 |  0.81 |     8.78 |     8.88 |     0.74 |      0.43 |
|    0 |     149 |      505 |        2 |        0 |       0 |     439 |     425 |  0.77 |     7.62 |     7.9  |     0.74 |      0.43 |
|    0 |     150 |      494 |        0 |        0 |       0 |     416 |     414 |  0.79 |     6.92 |     6.97 |     0.73 |      0.42 |
|    0 |     151 |      490 |        2 |        0 |       0 |     423 |     420 |  0.72 |     6.56 |     6.62 |     0.73 |      0.44 |
|    0 |     152 |      515 |        0 |        0 |       0 |     458 |     453 |  0.71 |     5.96 |     6.1  |     0.72 |      0.44 |
|    0 |     153 |      516 |        0 |        0 |       0 |     432 |     430 |  0.8  |     7.12 |     7.24 |     0.73 |      0.43 |
|    0 |     154 |      542 |        0 |        0 |       0 |     454 |     450 |  0.76 |     6.63 |     6.75 |     0.73 |      0.42 |
|    0 |     155 |      491 |        0 |        0 |       0 |     425 |     423 |  0.79 |     7.51 |     7.65 |     0.74 |      0.41 |
|    0 |     156 |      485 |        2 |        0 |       0 |     420 |     414 |  0.78 |     7.09 |     7.24 |     0.73 |      0.43 |
|    0 |     157 |      512 |        0 |        0 |       0 |     418 |     416 |  0.8  |     7.47 |     7.5  |     0.74 |      0.4  |
|    0 |     158 |      515 |        0 |        0 |       0 |     446 |     439 |  0.83 |     8.06 |     8.25 |     0.74 |      0.41 |
|    0 |     159 |      526 |        0 |        0 |       0 |     451 |     446 |  0.78 |     7.05 |     7.16 |     0.73 |      0.44 |
|    0 |     160 |      511 |        0 |        0 |       0 |     420 |     416 |  0.8  |     7.29 |     7.41 |     0.73 |      0.44 |
|    0 |     161 |      505 |        0 |        0 |       0 |     424 |     420 |  0.79 |     6.54 |     6.66 |     0.73 |      0.42 |
|    0 |     162 |      501 |        0 |        0 |       0 |     424 |     420 |  0.78 |     6.89 |     6.99 |     0.74 |      0.42 |
|    0 |     163 |      486 |        0 |        0 |       0 |     415 |     411 |  0.79 |     7.05 |     7.2  |     0.73 |      0.42 |
|    0 |     164 |      530 |        0 |        0 |       0 |     448 |     441 |  0.82 |     6.37 |     6.51 |     0.74 |      0.43 |
|    0 |     165 |      520 |        0 |        0 |       0 |     457 |     449 |  0.8  |     6.88 |     7.04 |     0.74 |      0.41 |
|    0 |     166 |      524 |        0 |        0 |       0 |     443 |     438 |  0.83 |     7.2  |     7.3  |     0.74 |      0.43 |
|    0 |     167 |      483 |        4 |        0 |       0 |     428 |     424 |  0.75 |     6.31 |     6.39 |     0.73 |      0.42 |
|    0 |     168 |      495 |        0 |        0 |       0 |     416 |     413 |  0.86 |     6.95 |     7.02 |     0.74 |      0.42 |
|    0 |     169 |      516 |        0 |        0 |       0 |     442 |     438 |  0.83 |     7.39 |     7.52 |     0.74 |      0.43 |
|    0 |     170 |      511 |        0 |        0 |       0 |     436 |     432 |  0.74 |     6.43 |     6.48 |     0.72 |      0.45 |
|    0 |     171 |      522 |        0 |        0 |       0 |     446 |     440 |  0.85 |     6.91 |     7.07 |     0.75 |      0.4  |
|    0 |     172 |      505 |        0 |        0 |       0 |     435 |     432 |  0.87 |     7.82 |     7.92 |     0.75 |      0.4  |
|    0 |     173 |      516 |        0 |        0 |       0 |     435 |     435 |  0.84 |     6.66 |     6.78 |     0.73 |      0.43 |
|    0 |     174 |      483 |        0 |        0 |       0 |     413 |     406 |  0.87 |     7.63 |     7.83 |     0.75 |      0.39 |
|    0 |     175 |      513 |        2 |        0 |       0 |     433 |     429 |  0.8  |     6.48 |     6.56 |     0.73 |      0.41 |
|    0 |     176 |      511 |        2 |        0 |       0 |     439 |     433 |  0.9  |     8.06 |     8.24 |     0.74 |      0.39 |
|    0 |     177 |      503 |        2 |        0 |       0 |     430 |     425 |  0.79 |     6.37 |     6.51 |     0.74 |      0.43 |
|    0 |     178 |      509 |        0 |        0 |       0 |     440 |     434 |  0.83 |     7.19 |     7.25 |     0.74 |      0.41 |
|    0 |     179 |      512 |        0 |        0 |       0 |     439 |     435 |  0.86 |     7.64 |     7.7  |     0.73 |      0.43 |
|    0 |     180 |      497 |        0 |        0 |       0 |     423 |     422 |  0.89 |     6.86 |     6.87 |     0.74 |      0.43 |
|    0 |     181 |      506 |        7 |        0 |       0 |     436 |     432 |  0.9  |     7.13 |     7.28 |     0.74 |      0.39 |
|    0 |     182 |      527 |       22 |        0 |       0 |     459 |     456 |  0.85 |     7.1  |     7.2  |     0.74 |      0.4  |
|    0 |     183 |      487 |        4 |        0 |       0 |     423 |     417 |  0.8  |     6.42 |     6.5  |     0.74 |      0.43 |
|    0 |     184 |      500 |        2 |        0 |       0 |     428 |     423 |  0.9  |     6.81 |     6.93 |     0.75 |      0.41 |
|    0 |     185 |      531 |        6 |        0 |       0 |     452 |     449 |  0.9  |     6.82 |     6.93 |     0.74 |      0.4  |
|    0 |     186 |      483 |        2 |        0 |       0 |     400 |     398 |  0.9  |     6.94 |     7.02 |     0.74 |      0.43 |
|    0 |     187 |      532 |        0 |        0 |       0 |     456 |     452 |  0.82 |     5.94 |     6.09 |     0.74 |      0.41 |
|    0 |     188 |      467 |        2 |        0 |       0 |     399 |     395 |  0.89 |     6.61 |     6.74 |     0.74 |      0.41 |
|    0 |     189 |      531 |        0 |        0 |       0 |     449 |     445 |  0.92 |     7.79 |     7.88 |     0.75 |      0.4  |
|    0 |     190 |      515 |        0 |        0 |       0 |     427 |     424 |  0.93 |     8.23 |     8.31 |     0.75 |      0.42 |
|    0 |     191 |      492 |        0 |        0 |       0 |     431 |     426 |  0.96 |     7.01 |     7.11 |     0.74 |      0.41 |
|    0 |     192 |      546 |        2 |        0 |       0 |     464 |     460 |  0.93 |     7.17 |     7.33 |     0.75 |      0.43 |
|    0 |     193 |      489 |        0 |        0 |       0 |     418 |     414 |  0.88 |     6.51 |     6.6  |     0.75 |      0.39 |
|    0 |     194 |      503 |        0 |        0 |       0 |     421 |     411 |  0.9  |     7.05 |     7.22 |     0.76 |      0.4  |
|    0 |     195 |      518 |        0 |        0 |       0 |     444 |     440 |  1    |     7.9  |     7.99 |     0.76 |      0.42 |
|    0 |     196 |      517 |        0 |        0 |       0 |     450 |     445 |  1.01 |     8.43 |     8.58 |     0.75 |      0.41 |
|    0 |     197 |      493 |        0 |        0 |       0 |     423 |     417 |  1.03 |     8.38 |     8.53 |     0.75 |      0.42 |
|    0 |     198 |      503 |        0 |        0 |       0 |     416 |     411 |  0.86 |     6.65 |     6.75 |     0.75 |      0.44 |
|    0 |     199 |      523 |        2 |        0 |       0 |     448 |     446 |  0.93 |     6.93 |     6.99 |     0.75 |      0.42 |
|    0 |     200 |      497 |        0 |        0 |       0 |     423 |     416 |  0.98 |     7.76 |     7.89 |     0.76 |      0.4  |
|    0 |     201 |      504 |        0 |        0 |       0 |     431 |     428 |  0.94 |     6.15 |     6.23 |     0.76 |      0.4  |
|    0 |     202 |      532 |        0 |        0 |       0 |     465 |     461 |  1.03 |     7.59 |     7.69 |     0.76 |      0.39 |
|    0 |     203 |      504 |        0 |        0 |       0 |     420 |     414 |  1.05 |     7.86 |     8.06 |     0.76 |      0.39 |
|    0 |     204 |      518 |        0 |        0 |       0 |     437 |     433 |  1    |     7.43 |     7.52 |     0.75 |      0.42 |
|    0 |     205 |      483 |        0 |        0 |       0 |     417 |     414 |  0.98 |     6.91 |     6.97 |     0.76 |      0.39 |
|    0 |     206 |      531 |        0 |        0 |       0 |     455 |     450 |  0.97 |     6.58 |     6.66 |     0.77 |      0.4  |
|    0 |     207 |      484 |        0 |        0 |       0 |     420 |     416 |  1.03 |     7.68 |     7.71 |     0.76 |      0.39 |
|    0 |     208 |      518 |        0 |        0 |       0 |     442 |     440 |  1.05 |     7.51 |     7.54 |     0.76 |      0.41 |
|    0 |     209 |      505 |        0 |        0 |       0 |     423 |     421 |  1.02 |     7.68 |     7.74 |     0.77 |      0.4  |
|    0 |     210 |      517 |        0 |        0 |       0 |     437 |     432 |  1.17 |     8.62 |     8.81 |     0.78 |      0.4  |
|    0 |     211 |      502 |        0 |        0 |       0 |     431 |     429 |  1.04 |     6.57 |     6.65 |     0.76 |      0.41 |
|    0 |     212 |      515 |        0 |        0 |       0 |     443 |     440 |  1.02 |     6.72 |     6.84 |     0.76 |      0.41 |
|    0 |     213 |      515 |        0 |        0 |       0 |     437 |     432 |  1.14 |     7.76 |     7.89 |     0.77 |      0.42 |
|    0 |     214 |      487 |        0 |        0 |       0 |     409 |     404 |  1    |     6.34 |     6.4  |     0.76 |      0.42 |
|    0 |     215 |      501 |        0 |        0 |       0 |     434 |     429 |  1.17 |     7.77 |     7.94 |     0.76 |      0.4  |
|    0 |     216 |      522 |        0 |        0 |       0 |     447 |     441 |  1.08 |     7.2  |     7.29 |     0.77 |      0.42 |
|    0 |     217 |      512 |        0 |        0 |       0 |     442 |     435 |  1.1  |     7.18 |     7.31 |     0.77 |      0.42 |
|    0 |     218 |      498 |        0 |        0 |       0 |     417 |     415 |  1.1  |     7.1  |     7.17 |     0.77 |      0.39 |
|    0 |     219 |      533 |        0 |        0 |       0 |     467 |     467 |  1.13 |     6.35 |     6.37 |     0.78 |      0.38 |
|    0 |     220 |      500 |        0 |        0 |       0 |     414 |     407 |  1.16 |     7.55 |     7.72 |     0.78 |      0.4  |
|    0 |     221 |      524 |        0 |        0 |       0 |     454 |     448 |  1.16 |     7.01 |     7.11 |     0.77 |      0.4  |
|    0 |     222 |      493 |        0 |        0 |       0 |     411 |     411 |  1.25 |     8.55 |     8.62 |     0.77 |      0.4  |
|    0 |     223 |      510 |        0 |        0 |       0 |     448 |     447 |  1.19 |     7.64 |     7.66 |     0.78 |      0.41 |
|    0 |     224 |      515 |        0 |        0 |       0 |     428 |     422 |  1.19 |     7.59 |     7.72 |     0.77 |      0.4  |
|    0 |     225 |      504 |        0 |        0 |       0 |     446 |     445 |  1.28 |     6.86 |     6.92 |     0.79 |      0.39 |
|    0 |     226 |      502 |        0 |        0 |       0 |     412 |     410 |  1.13 |     6.3  |     6.37 |     0.78 |      0.41 |
|    0 |     227 |      496 |        0 |        0 |       0 |     419 |     413 |  1.3  |     7.77 |     7.88 |     0.79 |      0.38 |
|    0 |     228 |      525 |        0 |        0 |       0 |     451 |     447 |  1.24 |     8.63 |     8.72 |     0.79 |      0.39 |
|    0 |     229 |      506 |        0 |        0 |       0 |     452 |     445 |  1.28 |     8.2  |     8.34 |     0.78 |      0.41 |
|    0 |     230 |      510 |        0 |        0 |       0 |     450 |     444 |  1.27 |     7.31 |     7.45 |     0.78 |      0.39 |
|    0 |     231 |      515 |        0 |        0 |       0 |     427 |     422 |  1.32 |     7.59 |     7.67 |     0.79 |      0.4  |
|    0 |     232 |      497 |        0 |        0 |       0 |     418 |     411 |  1.3  |     7.57 |     7.68 |     0.79 |      0.4  |
|    0 |     233 |      508 |        0 |        0 |       0 |     430 |     424 |  1.32 |     7.45 |     7.59 |     0.79 |      0.41 |
|    0 |     234 |      509 |        0 |        0 |       0 |     431 |     430 |  1.31 |     8.18 |     8.28 |     0.79 |      0.39 |
|    0 |     235 |      535 |        0 |        0 |       0 |     450 |     443 |  1.35 |     7.11 |     7.24 |     0.79 |      0.41 |
|    0 |     236 |      499 |        0 |        0 |       0 |     428 |     425 |  1.27 |     6.55 |     6.53 |     0.78 |      0.42 |
|    0 |     237 |      493 |        0 |        0 |       0 |     429 |     427 |  1.46 |     9.61 |     9.68 |     0.8  |      0.4  |
|    0 |     238 |      496 |        0 |        0 |       0 |     423 |     420 |  1.45 |     8.94 |     9.02 |     0.8  |      0.38 |
|    0 |     239 |      506 |        0 |        0 |       0 |     433 |     429 |  1.33 |     5.99 |     6.11 |     0.8  |      0.38 |
|    0 |     240 |      534 |        0 |        0 |       0 |     462 |     455 |  1.34 |     8.23 |     8.38 |     0.79 |      0.39 |
|    0 |     241 |      526 |        0 |        0 |       0 |     448 |     441 |  1.48 |     9.04 |     9.21 |     0.8  |      0.39 |
|    0 |     242 |      486 |        0 |        0 |       0 |     411 |     410 |  1.36 |     7.98 |     7.99 |     0.79 |      0.39 |
|    0 |     243 |      505 |        0 |        0 |       0 |     432 |     428 |  1.48 |     8.65 |     8.74 |     0.8  |      0.38 |
|    0 |     244 |      532 |        0 |        0 |       0 |     445 |     443 |  1.38 |     7.53 |     7.53 |     0.79 |      0.4  |
|    0 |     245 |      491 |        0 |        0 |       0 |     426 |     422 |  1.45 |     6.72 |     6.84 |     0.8  |      0.38 |
|    0 |     246 |      534 |        0 |        0 |       0 |     443 |     440 |  1.41 |     7.13 |     7.25 |     0.79 |      0.39 |
|    0 |     247 |      495 |        0 |        0 |       0 |     411 |     409 |  1.42 |     8.29 |     8.41 |     0.8  |      0.39 |
|    0 |     248 |      513 |        0 |        0 |       0 |     437 |     434 |  1.37 |     7.88 |     7.91 |     0.8  |      0.39 |
|    0 |     249 |      523 |        0 |        0 |       0 |     440 |     435 |  1.54 |     8.81 |     8.96 |     0.8  |      0.38 |
|    0 |     250 |      505 |        0 |        0 |       0 |     434 |     430 |  1.4  |     8.33 |     8.41 |     0.79 |      0.39 |
|    0 |     251 |      511 |        0 |        0 |       0 |     437 |     430 |  1.43 |     7.83 |     7.98 |     0.8  |      0.4  |
|    0 |     252 |      499 |        0 |        0 |       0 |     417 |     411 |  1.39 |     7.04 |     7.16 |     0.8  |      0.38 |
|    0 |     253 |      491 |        0 |        0 |       0 |     415 |     411 |  1.37 |     7.18 |     7.31 |     0.8  |      0.38 |
|    0 |     254 |      523 |        0 |        0 |       0 |     449 |     447 |  1.46 |     8.06 |     8.11 |     0.79 |      0.38 |
|    0 |     255 |      478 |        0 |        0 |       0 |     406 |     403 |  1.37 |     7.12 |     7.19 |     0.79 |      0.39 |
|    0 |     256 |      540 |        0 |        0 |       0 |     447 |     443 |  1.38 |     7.71 |     7.76 |     0.79 |      0.38 |
|    0 |     257 |      516 |        0 |        0 |       0 |     442 |     437 |  1.45 |     9.17 |     9.32 |     0.79 |      0.37 |
|    0 |     258 |      503 |        0 |        0 |       0 |     432 |     429 |  1.28 |     6.24 |     6.29 |     0.79 |      0.38 |
|    0 |     259 |      544 |        0 |        0 |       0 |     461 |     458 |  1.4  |     8.29 |     8.34 |     0.79 |      0.39 |
|    0 |     260 |      492 |        0 |        0 |       0 |     417 |     412 |  1.34 |     7.53 |     7.59 |     0.78 |      0.41 |
|    0 |     261 |      484 |        0 |        0 |       0 |     419 |     417 |  1.36 |     7.69 |     7.76 |     0.79 |      0.39 |
|    0 |     262 |      515 |        0 |        0 |       0 |     429 |     420 |  1.29 |     6.56 |     6.73 |     0.79 |      0.39 |
|    0 |     263 |      522 |        0 |        0 |       0 |     437 |     432 |  1.29 |     6.95 |     7.02 |     0.79 |      0.4  |
|    0 |     264 |      487 |        0 |        0 |       0 |     399 |     395 |  1.32 |     8.89 |     8.96 |     0.79 |      0.39 |
|    0 |     265 |      509 |        0 |        0 |       0 |     443 |     438 |  1.16 |     7.6  |     7.68 |     0.78 |      0.39 |
|    0 |     266 |      511 |        0 |        0 |       0 |     439 |     437 |  1.37 |     7.61 |     7.59 |     0.79 |      0.39 |
|    0 |     267 |      511 |        0 |        0 |       0 |     439 |     437 |  1.33 |     7.77 |     7.85 |     0.79 |      0.37 |
|    0 |     268 |      557 |        0 |        0 |       0 |     482 |     479 |  1.29 |     9.28 |     9.34 |     0.78 |      0.38 |
|    0 |     269 |      497 |        0 |        0 |       0 |     411 |     407 |  1.28 |     8.42 |     8.5  |     0.78 |      0.4  |
|    0 |     270 |      515 |        0 |        0 |       0 |     438 |     436 |  1.31 |     7.89 |     7.97 |     0.79 |      0.39 |
|    0 |     271 |      516 |        0 |        0 |       0 |     444 |     441 |  1.08 |     6.64 |     6.67 |     0.78 |      0.39 |
|    0 |     272 |      503 |        0 |        0 |       0 |     429 |     420 |  1.18 |     8.31 |     8.42 |     0.78 |      0.4  |
|    0 |     273 |      472 |        0 |        0 |       0 |     401 |     397 |  1.15 |     7.71 |     7.81 |     0.77 |      0.41 |
|    0 |     274 |      539 |        0 |        0 |       0 |     461 |     456 |  1.25 |     8.99 |     9.13 |     0.78 |      0.4  |
|    0 |     275 |      487 |        0 |        0 |       0 |     407 |     402 |  1.24 |     9.1  |     9.23 |     0.78 |      0.39 |
|    0 |     276 |      510 |        0 |        0 |       0 |     432 |     427 |  1.12 |     7.57 |     7.62 |     0.77 |      0.39 |
|    0 |     277 |      521 |        0 |        0 |       0 |     452 |     448 |  1.1  |     7.52 |     7.59 |     0.77 |      0.41 |
|    0 |     278 |      493 |        0 |        0 |       0 |     399 |     392 |  1.08 |     7.72 |     7.82 |     0.77 |      0.42 |
|    0 |     279 |      540 |        0 |        0 |       0 |     468 |     461 |  1.11 |     7.36 |     7.49 |     0.77 |      0.39 |
|    0 |     280 |      503 |        0 |        0 |       0 |     435 |     431 |  1.24 |     8.78 |     8.89 |     0.78 |      0.39 |
|    0 |     281 |      486 |        0 |        0 |       0 |     430 |     428 |  1.02 |     7.22 |     7.25 |     0.76 |      0.42 |
|    0 |     282 |      514 |        0 |        0 |       0 |     436 |     432 |  1.03 |     7.75 |     7.78 |     0.76 |      0.4  |
|    0 |     283 |      509 |        0 |        0 |       0 |     426 |     420 |  1.06 |     7.14 |     7.19 |     0.76 |      0.41 |
|    0 |     284 |      522 |        0 |        0 |       0 |     461 |     457 |  1.06 |     6.56 |     6.62 |     0.76 |      0.4  |
|    0 |     285 |      500 |        0 |        0 |       0 |     424 |     420 |  1.11 |     7.38 |     7.47 |     0.77 |      0.4  |
|    0 |     286 |      505 |        0 |        0 |       0 |     428 |     421 |  1.03 |     6.49 |     6.64 |     0.77 |      0.4  |
|    0 |     287 |      525 |        0 |        0 |       0 |     444 |     440 |  0.98 |     7.73 |     7.8  |     0.76 |      0.42 |
|    0 |     288 |      496 |        0 |        0 |       0 |     417 |     413 |  0.97 |     6.51 |     6.6  |     0.75 |      0.41 |
|    0 |     289 |      522 |        0 |        0 |       0 |     450 |     447 |  0.99 |     7.65 |     7.69 |     0.76 |      0.41 |
|    0 |     290 |      495 |        0 |        0 |       0 |     426 |     420 |  1.07 |     7.72 |     7.86 |     0.77 |      0.38 |
|    0 |     291 |      536 |        0 |        0 |       0 |     464 |     463 |  1.05 |     8.22 |     8.29 |     0.76 |      0.39 |
|    0 |     292 |      493 |        0 |        0 |       0 |     412 |     409 |  0.94 |     7.92 |     8.03 |     0.75 |      0.43 |
|    0 |     293 |      517 |        0 |        0 |       0 |     439 |     438 |  0.99 |     7.35 |     7.39 |     0.75 |      0.39 |
|    0 |     294 |      501 |        0 |        0 |       0 |     419 |     415 |  0.96 |     6.78 |     6.81 |     0.76 |      0.4  |
|    0 |     295 |      511 |        0 |        0 |       0 |     428 |     427 |  0.96 |     7.23 |     7.26 |     0.75 |      0.41 |
|    0 |     296 |      486 |        0 |        0 |       0 |     419 |     416 |  0.99 |     8.02 |     8.06 |     0.75 |      0.41 |
|    0 |     297 |      532 |        0 |        0 |       0 |     439 |     434 |  0.92 |     6.7  |     6.77 |     0.76 |      0.4  |
|    0 |     298 |      509 |        0 |        0 |       0 |     422 |     418 |  1.01 |     8.03 |     8.09 |     0.76 |      0.39 |
|    0 |     299 |      520 |        0 |        0 |       0 |     448 |     443 |  0.96 |     8.61 |     8.75 |     0.75 |      0.4  |
|    0 |     300 |      473 |        0 |        0 |       0 |     395 |     393 |  0.92 |     8.63 |     8.68 |     0.75 |      0.4  |
|    0 |     301 |      543 |        0 |        0 |       0 |     472 |     471 |  0.95 |     7.93 |     7.94 |     0.75 |      0.39 |
|    0 |     302 |      514 |        0 |        0 |       0 |     432 |     427 |  0.83 |     6.6  |     6.67 |     0.74 |      0.41 |
|    0 |     303 |      530 |        0 |        0 |       0 |     455 |     451 |  0.98 |     8.21 |     8.34 |     0.74 |      0.42 |
|    0 |     304 |      476 |        0 |        0 |       0 |     397 |     395 |  0.87 |     6.97 |     7.09 |     0.73 |      0.42 |
|    0 |     305 |      536 |        0 |        0 |       0 |     448 |     441 |  0.94 |     6.63 |     6.73 |     0.74 |      0.44 |
|    0 |     306 |      494 |        0 |        0 |       0 |     424 |     419 |  0.86 |     6.53 |     6.67 |     0.74 |      0.43 |
|    0 |     307 |      502 |        0 |        0 |       0 |     439 |     436 |  0.89 |     6.97 |     7.07 |     0.74 |      0.4  |
|    0 |     308 |      498 |        0 |        0 |       0 |     424 |     418 |  0.93 |     7.76 |     7.88 |     0.74 |      0.42 |
|    0 |     309 |      541 |        0 |        0 |       0 |     454 |     450 |  0.83 |     7.05 |     7.16 |     0.73 |      0.42 |
|    0 |     310 |      508 |        0 |        0 |       0 |     433 |     426 |  0.87 |     6.84 |     7.02 |     0.74 |      0.41 |
|    0 |     311 |      484 |        0 |        0 |       0 |     406 |     401 |  0.9  |     8.21 |     8.34 |     0.74 |      0.43 |
|    0 |     312 |      508 |        0 |        0 |       0 |     450 |     446 |  0.87 |     7.14 |     7.18 |     0.74 |      0.4  |
|    0 |     313 |      524 |        0 |        0 |       0 |     436 |     432 |  0.92 |     8.04 |     8.16 |     0.74 |      0.42 |
|    0 |     314 |      508 |        0 |        0 |       0 |     440 |     434 |  0.87 |     7.52 |     7.69 |     0.74 |      0.41 |
|    0 |     315 |      524 |        0 |        0 |       0 |     440 |     436 |  0.79 |     6.05 |     6.14 |     0.72 |      0.43 |
|    0 |     316 |      509 |        0 |        0 |       0 |     438 |     432 |  0.79 |     7.84 |     7.95 |     0.73 |      0.42 |
|    0 |     317 |      495 |        0 |        0 |       0 |     424 |     422 |  0.86 |     7.01 |     7.04 |     0.74 |      0.41 |
|    0 |     318 |      472 |        0 |        0 |       0 |     401 |     397 |  0.93 |     8.64 |     8.76 |     0.74 |      0.4  |
|    0 |     319 |      548 |        0 |        0 |       0 |     465 |     462 |  0.83 |     7.19 |     7.25 |     0.73 |      0.41 |
|    0 |     320 |      496 |        0 |        0 |       0 |     435 |     430 |  0.82 |     6.63 |     6.74 |     0.73 |      0.42 |
|    0 |     321 |      518 |        0 |        0 |       0 |     439 |     437 |  0.84 |     6.93 |     6.99 |     0.73 |      0.44 |
|    0 |     322 |      499 |        0 |        0 |       0 |     425 |     420 |  0.79 |     7.16 |     7.21 |     0.73 |      0.45 |
|    0 |     323 |      534 |        0 |        0 |       0 |     443 |     439 |  0.73 |     5.91 |     6    |     0.72 |      0.47 |
|    0 |     324 |      484 |        0 |        0 |       0 |     415 |     412 |  0.9  |     8.74 |     8.76 |     0.74 |      0.41 |
|    0 |     325 |      526 |        0 |        0 |       0 |     448 |     446 |  0.9  |     8.05 |     8.12 |     0.74 |      0.41 |
|    0 |     326 |      503 |        0 |        0 |       0 |     430 |     427 |  0.82 |     7.57 |     7.65 |     0.73 |      0.44 |
|    0 |     327 |      490 |        0 |        0 |       0 |     412 |     407 |  0.81 |     7.54 |     7.63 |     0.73 |      0.43 |
|    0 |     328 |      532 |        0 |        0 |       0 |     458 |     453 |  0.75 |     7.12 |     7.16 |     0.72 |      0.42 |
|    0 |     329 |      517 |        0 |        0 |       0 |     430 |     428 |  0.76 |     6.7  |     6.74 |     0.71 |      0.44 |
|    0 |     330 |      529 |        0 |        0 |       0 |     455 |     449 |  0.83 |     7.21 |     7.35 |     0.73 |      0.45 |
|    0 |     331 |      495 |        0 |        0 |       0 |     420 |     417 |  0.81 |     7.52 |     7.52 |     0.72 |      0.44 |
|    0 |     332 |      493 |        0 |        0 |       0 |     417 |     413 |  0.77 |     6.15 |     6.22 |     0.73 |      0.43 |
|    0 |     333 |      498 |        0 |        0 |       0 |     424 |     423 |  0.77 |     6.93 |     7.02 |     0.72 |      0.43 |
|    0 |     334 |      515 |        0 |        0 |       0 |     453 |     448 |  0.81 |     7.49 |     7.57 |     0.73 |      0.45 |
|    0 |     335 |      501 |        0 |        0 |       0 |     412 |     410 |  0.72 |     6.95 |     6.99 |     0.71 |      0.44 |
|    0 |     336 |      529 |        0 |        0 |       0 |     455 |     450 |  0.69 |     5.67 |     5.74 |     0.71 |      0.47 |
|    0 |     337 |      519 |        0 |        0 |       0 |     427 |     423 |  0.81 |     7.59 |     7.71 |     0.73 |      0.45 |
|    0 |     338 |      498 |        0 |        0 |       0 |     428 |     425 |  0.76 |     6.75 |     6.78 |     0.72 |      0.41 |
|    0 |     339 |      522 |        0 |        0 |       0 |     429 |     423 |  0.81 |     7.51 |     7.63 |     0.73 |      0.45 |
|    0 |     340 |      486 |        0 |        0 |       0 |     420 |     415 |  0.79 |     7.18 |     7.28 |     0.72 |      0.42 |
|    0 |     341 |      522 |        0 |        0 |       0 |     446 |     443 |  0.79 |     7.13 |     7.18 |     0.73 |      0.4  |
|    0 |     342 |      492 |        0 |        0 |       0 |     426 |     424 |  0.7  |     5.88 |     5.84 |     0.71 |      0.47 |
|    0 |     343 |      530 |        0 |        0 |       0 |     448 |     441 |  0.71 |     6.13 |     6.24 |     0.72 |      0.42 |
|    0 |     344 |      497 |        0 |        0 |       0 |     423 |     419 |  0.72 |     6.09 |     6.2  |     0.72 |      0.44 |
|    0 |     345 |      520 |        0 |        0 |       0 |     451 |     447 |  0.81 |     7.28 |     7.42 |     0.72 |      0.44 |
|    0 |     346 |      488 |        0 |        0 |       0 |     406 |     397 |  0.71 |     6.37 |     6.52 |     0.71 |      0.47 |
|    0 |     347 |      537 |        0 |        0 |       0 |     451 |     446 |  0.74 |     6.35 |     6.46 |     0.72 |      0.43 |
|    0 |     348 |      491 |        0 |        0 |       0 |     419 |     416 |  0.78 |     7.55 |     7.62 |     0.74 |      0.41 |
|    0 |     349 |      509 |        0 |        0 |       0 |     430 |     426 |  0.75 |     6.92 |     7.06 |     0.72 |      0.42 |
|    0 |     350 |      514 |        0 |        0 |       0 |     416 |     411 |  0.69 |     6.74 |     6.82 |     0.71 |      0.47 |
|    0 |     351 |      525 |        0 |        0 |       0 |     458 |     454 |  0.8  |     6.98 |     7.1  |     0.73 |      0.44 |
|    0 |     352 |      505 |        0 |        0 |       0 |     430 |     424 |  0.76 |     7.12 |     7.24 |     0.72 |      0.44 |
|    0 |     353 |      477 |        0 |        0 |       0 |     404 |     399 |  0.7  |     6.36 |     6.43 |     0.71 |      0.44 |
|    0 |     354 |      516 |        0 |        0 |       0 |     450 |     445 |  0.76 |     7.63 |     7.74 |     0.73 |      0.44 |
|    0 |     355 |      530 |        0 |        0 |       0 |     451 |     445 |  0.65 |     5.61 |     5.66 |     0.71 |      0.47 |
|    0 |     356 |      512 |        2 |        0 |       0 |     443 |     441 |  0.72 |     6.75 |     6.84 |     0.71 |      0.44 |
|    0 |     357 |      499 |        2 |        0 |       0 |     417 |     416 |  0.75 |     7.33 |     7.37 |     0.73 |      0.42 |
|    0 |     358 |      543 |        0 |        0 |       0 |     463 |     458 |  0.67 |     5.93 |     5.98 |     0.71 |      0.44 |
|    0 |     359 |      472 |        0 |        0 |       0 |     404 |     401 |  0.73 |     6.51 |     6.62 |     0.71 |      0.48 |
|    0 |     360 |      488 |        4 |        0 |       0 |     422 |     418 |  0.77 |     7.79 |     7.89 |     0.73 |      0.41 |
|    0 |     361 |      536 |       17 |        0 |       0 |     468 |     458 |  0.78 |     8.47 |     9.06 |     0.72 |      0.43 |
|    0 |     362 |      480 |       15 |        0 |       0 |     413 |     412 |  0.75 |     6.48 |     6.43 |     0.72 |      0.44 |
|    0 |     363 |      486 |       20 |        0 |       0 |     429 |     424 |  0.69 |     6.76 |     6.93 |     0.7  |      0.46 |
|    0 |     364 |      510 |        0 |        0 |       0 |     442 |     440 |  0.67 |     5.98 |     6    |     0.72 |      0.43 |
|    0 |     365 |      512 |        0 |        0 |       0 |     446 |     439 |  0.73 |     7.67 |     7.77 |     0.73 |      0.42 |
|    0 |     366 |      516 |        0 |        0 |       0 |     420 |     416 |  0.68 |     6.37 |     6.38 |     0.71 |      0.42 |
|    0 |     367 |      542 |        2 |        0 |       0 |     468 |     466 |  0.74 |     7.81 |     7.91 |     0.71 |      0.45 |
|    0 |     368 |      541 |        0 |        0 |       0 |     471 |     467 |  0.7  |     8.04 |     8.19 |     0.72 |      0.42 |
|    0 |     369 |      520 |        2 |        0 |       0 |     439 |     433 |  0.64 |     6.51 |     6.58 |     0.71 |      0.45 |
|    0 |     370 |      473 |        0 |        0 |       0 |     408 |     406 |  0.71 |     7.55 |     7.6  |     0.72 |      0.45 |
|    0 |     371 |      459 |        0 |        0 |       0 |     397 |     394 |  0.7  |     5.87 |     5.94 |     0.71 |      0.46 |
|    0 |     372 |      524 |        0 |        0 |       0 |     445 |     440 |  0.77 |     7.72 |     7.86 |     0.73 |      0.43 |
|    0 |     373 |      503 |        0 |        0 |       0 |     437 |     432 |  0.73 |     7.12 |     7.21 |     0.72 |      0.41 |
|    0 |     374 |      507 |        2 |        0 |       0 |     432 |     431 |  0.76 |     8.31 |     8.33 |     0.71 |      0.45 |
|    0 |     375 |      500 |        0 |        0 |       0 |     433 |     427 |  0.69 |     6.31 |     6.4  |     0.71 |      0.43 |
|    0 |     376 |      508 |        0 |        0 |       0 |     423 |     419 |  0.7  |     6.24 |     6.28 |     0.72 |      0.44 |
|    0 |     377 |      525 |        0 |        0 |       0 |     446 |     440 |  0.6  |     5.65 |     5.71 |     0.7  |      0.45 |
|    0 |     378 |      515 |        0 |        0 |       0 |     435 |     429 |  0.68 |     6.32 |     6.41 |     0.7  |      0.44 |
|    0 |     379 |      511 |        0 |        0 |       0 |     423 |     421 |  0.69 |     5.6  |     5.65 |     0.71 |      0.46 |
|    0 |     380 |      536 |        0 |        0 |       0 |     461 |     458 |  0.7  |     6.58 |     6.63 |     0.72 |      0.42 |
|    0 |     381 |      525 |        2 |        0 |       0 |     438 |     434 |  0.71 |     7.38 |     7.49 |     0.72 |      0.46 |
|    0 |     382 |      520 |        0 |        0 |       0 |     427 |     421 |  0.75 |     7.18 |     7.32 |     0.72 |      0.43 |
|    0 |     383 |      490 |        0 |        0 |       0 |     419 |     418 |  0.66 |     6.75 |     6.77 |     0.71 |      0.41 |
|    0 |     384 |      501 |        0 |        0 |       0 |     420 |     410 |  0.66 |     6.1  |     6.23 |     0.71 |      0.43 |
|    0 |     385 |      501 |        0 |        0 |       0 |     438 |     435 |  0.65 |     6.32 |     6.35 |     0.71 |      0.46 |
|    0 |     386 |      497 |        0 |        0 |       0 |     428 |     422 |  0.68 |     7.64 |     7.77 |     0.71 |      0.47 |
|    0 |     387 |      525 |        0 |        0 |       0 |     462 |     458 |  0.74 |     7.1  |     7.21 |     0.72 |      0.44 |
|    0 |     388 |      499 |        0 |        0 |       0 |     431 |     425 |  0.7  |     7.2  |     7.28 |     0.71 |      0.43 |
|    0 |     389 |      528 |        0 |        0 |       0 |     440 |     435 |  0.75 |     8.28 |     8.43 |     0.71 |      0.45 |
|    0 |     390 |      488 |        0 |        0 |       0 |     421 |     418 |  0.7  |     6.73 |     6.76 |     0.71 |      0.45 |
|    0 |     391 |      526 |        0 |        0 |       0 |     438 |     434 |  0.7  |     6.8  |     6.85 |     0.72 |      0.43 |
|    0 |     392 |      522 |        0 |        0 |       0 |     444 |     437 |  0.71 |     6.69 |     6.77 |     0.71 |      0.47 |
|    0 |     393 |      489 |        2 |        0 |       0 |     418 |     416 |  0.68 |     6.48 |     6.48 |     0.72 |      0.46 |
|    0 |     394 |      542 |        0 |        0 |       0 |     465 |     461 |  0.63 |     6.09 |     6.1  |     0.71 |      0.46 |
|    0 |     395 |      496 |        0 |        0 |       0 |     429 |     425 |  0.68 |     6.48 |     6.53 |     0.72 |      0.46 |
|    0 |     396 |      496 |        0 |        0 |       0 |     418 |     412 |  0.63 |     6.07 |     6.09 |     0.71 |      0.45 |
|    0 |     397 |      523 |        0 |        0 |       0 |     459 |     457 |  0.65 |     5.92 |     5.93 |     0.71 |      0.44 |
|    0 |     398 |      497 |        0 |        0 |       0 |     406 |     403 |  0.67 |     6.43 |     6.51 |     0.72 |      0.44 |
|    0 |     399 |      505 |        0 |        0 |       0 |     424 |     423 |  0.66 |     6.78 |     6.82 |     0.72 |      0.46 |
|    0 |     400 |      520 |        0 |        0 |       0 |     443 |     440 |  0.72 |     7.08 |     7.13 |     0.72 |      0.44 |
|    0 |     401 |      502 |        0 |        0 |       0 |     430 |     424 |  0.72 |     6.84 |     6.95 |     0.72 |      0.43 |
|    0 |     402 |      503 |        0 |        0 |       0 |     424 |     418 |  0.7  |     7.01 |     7.12 |     0.72 |      0.44 |
|    0 |     403 |      505 |        0 |        0 |       0 |     438 |     431 |  0.65 |     6.21 |     6.29 |     0.72 |      0.45 |
|    0 |     404 |      509 |        0 |        0 |       0 |     438 |     434 |  0.71 |     7.8  |     7.86 |     0.73 |      0.42 |
|    0 |     405 |      518 |        0 |        0 |       0 |     446 |     438 |  0.65 |     6.57 |     6.65 |     0.72 |      0.43 |
|    0 |     406 |      492 |        0 |        0 |       0 |     413 |     409 |  0.69 |     6.74 |     6.78 |     0.71 |      0.43 |
|    0 |     407 |      530 |        0 |        0 |       0 |     454 |     445 |  0.68 |     6.41 |     6.6  |     0.71 |      0.44 |
|    0 |     408 |      488 |        0 |        0 |       0 |     410 |     408 |  0.72 |     7.21 |     7.23 |     0.72 |      0.43 |
|    0 |     409 |      541 |        0 |        0 |       0 |     460 |     454 |  0.64 |     6.59 |     6.74 |     0.7  |      0.48 |
|    0 |     410 |      481 |        0 |        0 |       0 |     406 |     400 |  0.7  |     6.42 |     6.56 |     0.73 |      0.4  |
|    0 |     411 |      540 |        0 |        0 |       0 |     461 |     459 |  0.63 |     6.63 |     6.69 |     0.69 |      0.46 |
|    0 |     412 |      478 |        0 |        0 |       0 |     409 |     407 |  0.66 |     6.58 |     6.59 |     0.72 |      0.41 |
|    0 |     413 |      542 |        0 |        0 |       0 |     456 |     453 |  0.68 |     7.23 |     7.31 |     0.7  |      0.46 |
|    0 |     414 |      494 |        0 |        0 |       0 |     427 |     423 |  0.68 |     7.13 |     7.22 |     0.72 |      0.41 |
|    0 |     415 |      522 |        0 |        0 |       0 |     446 |     444 |  0.67 |     5.69 |     5.74 |     0.71 |      0.44 |
|    0 |     416 |      494 |        0 |        0 |       0 |     412 |     408 |  0.72 |     6.74 |     6.86 |     0.72 |      0.43 |
|    0 |     417 |      530 |        0 |        0 |       0 |     450 |     443 |  0.63 |     5.9  |     5.97 |     0.7  |      0.49 |
|    0 |     418 |      500 |        0 |        0 |       0 |     435 |     431 |  0.71 |     6.68 |     6.75 |     0.73 |      0.43 |
|    0 |     419 |      533 |        0 |        0 |       0 |     454 |     450 |  0.62 |     6.09 |     6.11 |     0.7  |      0.47 |
|    0 |     420 |      486 |        0 |        0 |       0 |     415 |     410 |  0.72 |     7.22 |     7.32 |     0.73 |      0.42 |
|    0 |     421 |      534 |        0 |        0 |       0 |     449 |     446 |  0.65 |     5.81 |     5.81 |     0.7  |      0.45 |
|    0 |     422 |      496 |        0 |        0 |       0 |     421 |     417 |  0.69 |     6.56 |     6.6  |     0.73 |      0.43 |
|    0 |     423 |      508 |        0 |        0 |       0 |     426 |     423 |  0.7  |     6.63 |     6.69 |     0.7  |      0.45 |
|    0 |     424 |      517 |        0 |        0 |       0 |     436 |     434 |  0.67 |     7.26 |     7.3  |     0.72 |      0.44 |
|    0 |     425 |      492 |        0 |        0 |       0 |     425 |     421 |  0.7  |     6.97 |     7.06 |     0.72 |      0.46 |
|    0 |     426 |      530 |        0 |        0 |       0 |     461 |     456 |  0.68 |     6.71 |     6.81 |     0.73 |      0.44 |
|    0 |     427 |      504 |        0 |        0 |       0 |     434 |     427 |  0.69 |     6.86 |     7.01 |     0.71 |      0.46 |
|    0 |     428 |      498 |        0 |        0 |       0 |     416 |     410 |  0.65 |     6.31 |     6.39 |     0.72 |      0.44 |
|    0 |     429 |      501 |        0 |        0 |       0 |     421 |     416 |  0.69 |     6.56 |     6.66 |     0.72 |      0.45 |
|    0 |     430 |      506 |        0 |        0 |       0 |     436 |     433 |  0.66 |     5.91 |     5.98 |     0.71 |      0.45 |
|    0 |     431 |      531 |        0 |        0 |       0 |     449 |     442 |  0.76 |     8.81 |     8.99 |     0.73 |      0.43 |
|    0 |     432 |      480 |        0 |        0 |       0 |     419 |     416 |  0.61 |     6.05 |     6.04 |     0.71 |      0.43 |
|    0 |     433 |      525 |        0 |        0 |       0 |     450 |     446 |  0.68 |     6.37 |     6.45 |     0.72 |      0.44 |
|    0 |     434 |      522 |        0 |        0 |       0 |     435 |     432 |  0.65 |     6.1  |     6.14 |     0.72 |      0.43 |
|    0 |     435 |      487 |        0 |        0 |       0 |     422 |     421 |  0.63 |     5.53 |     5.51 |     0.7  |      0.46 |
|    0 |     436 |      520 |        0 |        0 |       0 |     449 |     446 |  0.66 |     6.69 |     6.75 |     0.72 |      0.45 |
|    0 |     437 |      498 |        0 |        0 |       0 |     415 |     409 |  0.68 |     6.59 |     6.72 |     0.72 |      0.44 |
|    0 |     438 |      520 |        0 |        0 |       0 |     434 |     430 |  0.66 |     6.52 |     6.55 |     0.72 |      0.43 |
|    0 |     439 |      529 |        0 |        0 |       0 |     459 |     451 |  0.67 |     6.59 |     6.76 |     0.71 |      0.44 |
|    0 |     440 |      503 |        0 |        0 |       0 |     433 |     429 |  0.71 |     7.04 |     7.14 |     0.73 |      0.42 |
|    0 |     441 |      512 |        0 |        0 |       0 |     432 |     428 |  0.7  |     6.77 |     6.84 |     0.71 |      0.46 |
|    0 |     442 |      507 |        0 |        0 |       0 |     429 |     421 |  0.68 |     6.61 |     6.76 |     0.72 |      0.41 |
|    0 |     443 |      507 |        0 |        0 |       0 |     421 |     417 |  0.72 |     6.43 |     6.55 |     0.73 |      0.41 |
|    0 |     444 |      514 |        0 |        0 |       0 |     428 |     426 |  0.67 |     6.71 |     6.79 |     0.72 |      0.45 |
|    0 |     445 |      487 |        0 |        0 |       0 |     406 |     401 |  0.64 |     6.71 |     6.77 |     0.73 |      0.43 |
|    0 |     446 |      511 |        0 |        0 |       0 |     436 |     428 |  0.65 |     6.08 |     6.19 |     0.73 |      0.43 |
|    0 |     447 |      480 |        0 |        0 |       0 |     407 |     405 |  0.62 |     6.05 |     6    |     0.71 |      0.44 |
|    0 |     448 |      548 |        0 |        0 |       0 |     472 |     470 |  0.76 |     8.13 |     8.22 |     0.73 |      0.44 |
|    0 |     449 |      499 |        0 |        0 |       0 |     423 |     415 |  0.68 |     5.88 |     6.05 |     0.72 |      0.44 |
|    0 |     450 |      495 |        0 |        0 |       0 |     422 |     421 |  0.74 |     6.95 |     7.02 |     0.73 |      0.41 |
|    0 |     451 |      537 |        0 |        0 |       0 |     456 |     452 |  0.63 |     6.12 |     6.13 |     0.71 |      0.43 |
|    0 |     452 |      525 |        0 |        0 |       0 |     453 |     449 |  0.7  |     7.23 |     7.34 |     0.72 |      0.42 |
|    0 |     453 |      523 |        0 |        0 |       0 |     442 |     441 |  0.58 |     5.27 |     5.29 |     0.7  |      0.44 |
|    0 |     454 |      503 |        0 |        0 |       0 |     436 |     428 |  0.62 |     5.69 |     5.8  |     0.72 |      0.44 |
|    0 |     455 |      517 |        0 |        0 |       0 |     436 |     429 |  0.7  |     6.23 |     6.34 |     0.73 |      0.42 |
|    0 |     456 |      516 |        0 |        0 |       0 |     431 |     425 |  0.69 |     6.13 |     6.25 |     0.72 |      0.44 |
|    0 |     457 |      463 |        0 |        0 |       0 |     397 |     394 |  0.73 |     7.19 |     7.28 |     0.73 |      0.41 |
|    0 |     458 |      539 |        0 |        0 |       0 |     459 |     458 |  0.71 |     7.04 |     7.13 |     0.73 |      0.43 |
|    0 |     459 |      471 |        0 |        0 |       0 |     400 |     394 |  0.68 |     6.38 |     6.49 |     0.72 |      0.44 |
|    0 |     460 |      467 |        0 |        0 |       0 |     399 |     396 |  0.67 |     6.56 |     6.69 |     0.72 |      0.46 |
|    0 |     461 |      509 |        0 |        0 |       0 |     436 |     431 |  0.65 |     6.01 |     6.07 |     0.72 |      0.43 |
|    0 |     462 |      546 |        0 |        0 |       0 |     455 |     450 |  0.71 |     6.16 |     6.29 |     0.72 |      0.41 |
|    0 |     463 |      544 |        0 |        0 |       0 |     468 |     464 |  0.67 |     6.88 |     6.98 |     0.71 |      0.45 |
|    0 |     464 |      526 |        0 |        0 |       0 |     444 |     437 |  0.66 |     6.15 |     6.31 |     0.71 |      0.42 |
|    0 |     465 |      515 |        0 |        0 |       0 |     447 |     438 |  0.71 |     6.68 |     6.87 |     0.73 |      0.44 |
|    0 |     466 |      512 |        0 |        0 |       0 |     444 |     440 |  0.69 |     7.42 |     7.5  |     0.71 |      0.42 |
|    0 |     467 |      522 |        0 |        0 |       0 |     436 |     434 |  0.64 |     6.14 |     6.23 |     0.72 |      0.44 |
|    0 |     468 |      455 |        0 |        0 |       0 |     381 |     379 |  0.73 |     7.15 |     7.24 |     0.72 |      0.43 |
|    0 |     469 |      560 |        0 |        0 |       0 |     481 |     477 |  0.72 |     6.43 |     6.47 |     0.73 |      0.41 |
|    0 |     470 |      489 |        0 |        0 |       0 |     419 |     414 |  0.75 |     7.47 |     7.59 |     0.73 |      0.42 |
|    0 |     471 |      448 |        0 |        0 |       0 |     386 |     386 |  0.68 |     5.78 |     5.82 |     0.72 |      0.41 |
|    0 |     472 |      507 |        0 |        0 |       0 |     421 |     418 |  0.65 |     6.17 |     6.24 |     0.71 |      0.42 |
|    0 |     473 |      579 |        0 |        0 |       0 |     499 |     494 |  0.68 |     6.76 |     6.78 |     0.73 |      0.42 |
|    0 |     474 |      497 |        0 |        0 |       0 |     431 |     426 |  0.65 |     5.41 |     5.53 |     0.72 |      0.42 |
|    0 |     475 |      535 |        0 |        0 |       0 |     459 |     455 |  0.67 |     6.39 |     6.43 |     0.72 |      0.42 |
|    0 |     476 |      499 |        0 |        0 |       0 |     408 |     404 |  0.69 |     6.67 |     6.78 |     0.72 |      0.46 |
|    0 |     477 |      504 |        0 |        0 |       0 |     422 |     416 |  0.72 |     6.61 |     6.77 |     0.73 |      0.43 |
|    0 |     478 |      501 |        0 |        0 |       0 |     429 |     427 |  0.72 |     7.09 |     7.15 |     0.74 |      0.42 |
|    0 |     479 |      521 |        0 |        0 |       0 |     453 |     445 |  0.76 |     7.14 |     7.34 |     0.72 |      0.44 |
|    0 |     480 |      465 |        0 |        0 |       0 |     403 |     400 |  0.73 |     6.36 |     6.42 |     0.73 |      0.44 |
|    0 |     481 |      497 |        0 |        0 |       0 |     425 |     422 |  0.65 |     5.49 |     5.59 |     0.7  |      0.44 |
|    0 |     482 |      560 |        0 |        0 |       0 |     479 |     478 |  0.73 |     6.14 |     6.2  |     0.72 |      0.45 |
|    0 |     483 |      510 |        0 |        0 |       0 |     419 |     416 |  0.67 |     5.43 |     5.51 |     0.71 |      0.44 |
|    0 |     484 |      515 |        0 |        0 |       0 |     445 |     441 |  0.69 |     6.56 |     6.67 |     0.71 |      0.45 |
|    0 |     485 |      513 |        0 |        0 |       0 |     431 |     426 |  0.77 |     6.79 |     6.94 |     0.72 |      0.42 |
|    0 |     486 |      506 |        0 |        0 |       0 |     436 |     436 |  0.7  |     6.25 |     6.27 |     0.73 |      0.41 |
|    0 |     487 |      506 |        0 |        0 |       0 |     435 |     431 |  0.64 |     5.52 |     5.6  |     0.73 |      0.43 |
|    0 |     488 |      469 |        0 |        0 |       0 |     399 |     397 |  0.74 |     6.64 |     6.71 |     0.72 |      0.46 |
|    0 |     489 |      508 |        0 |        0 |       0 |     428 |     424 |  0.66 |     6.05 |     6.06 |     0.7  |      0.45 |
|    0 |     490 |      511 |        0 |        0 |       0 |     435 |     433 |  0.7  |     5.51 |     5.53 |     0.73 |      0.44 |
|    0 |     491 |      546 |        0 |        0 |       0 |     461 |     455 |  0.74 |     6.79 |     6.92 |     0.72 |      0.45 |
|    0 |     492 |      505 |        0 |        0 |       0 |     432 |     429 |  0.68 |     6.06 |     6.13 |     0.7  |      0.44 |
|    0 |     493 |      503 |        0 |        0 |       0 |     429 |     427 |  0.76 |     7.41 |     7.51 |     0.73 |      0.42 |
|    0 |     494 |      508 |        0 |        0 |       0 |     441 |     434 |  0.72 |     6    |     6.12 |     0.73 |      0.43 |
|    0 |     495 |      521 |        0 |        0 |       0 |     444 |     438 |  0.74 |     7.32 |     7.44 |     0.73 |      0.41 |
|    0 |     496 |      474 |        0 |        0 |       0 |     403 |     401 |  0.68 |     5.48 |     5.49 |     0.71 |      0.45 |
|    0 |     497 |      541 |        0 |        0 |       0 |     473 |     469 |  0.72 |     6.01 |     6.05 |     0.72 |      0.44 |
|    0 |     498 |      523 |        0 |        0 |       0 |     438 |     433 |  0.73 |     6.66 |     6.76 |     0.73 |      0.44 |
|    0 |     499 |      497 |        0 |        0 |       0 |     428 |     426 |  0.68 |     5.44 |     5.5  |     0.72 |      0.45 |
|    0 |     500 |      517 |        0 |        0 |       0 |     434 |     426 |  0.72 |     6.11 |     6.16 |     0.71 |      0.46 |
|    0 |     501 |      523 |        0 |        0 |       0 |     449 |     445 |  0.76 |     6.94 |     7.02 |     0.73 |      0.41 |
|    0 |     502 |      490 |        0 |        0 |       0 |     427 |     420 |  0.73 |     5.94 |     6.09 |     0.72 |      0.45 |
|    0 |     503 |      499 |        0 |        0 |       0 |     421 |     416 |  0.73 |     6.9  |     6.96 |     0.72 |      0.45 |
|    0 |     504 |      480 |        0 |        0 |       0 |     407 |     405 |  0.7  |     5.9  |     5.96 |     0.72 |      0.44 |
|    0 |     505 |      549 |        0 |        0 |       0 |     487 |     482 |  0.74 |     6.42 |     6.48 |     0.72 |      0.44 |
|    0 |     506 |      499 |        0 |        0 |       0 |     423 |     418 |  0.72 |     6.93 |     7.07 |     0.71 |      0.45 |
|    0 |     507 |      503 |        0 |        0 |       0 |     430 |     425 |  0.76 |     7.66 |     7.75 |     0.73 |      0.41 |
|    0 |     508 |      544 |        0 |        0 |       0 |     464 |     458 |  0.8  |     7.05 |     7.18 |     0.73 |      0.42 |
|    0 |     509 |      485 |        0 |        0 |       0 |     416 |     408 |  0.75 |     6.53 |     6.75 |     0.72 |      0.45 |
|    0 |     510 |      515 |        0 |        0 |       0 |     441 |     436 |  0.78 |     6.26 |     6.41 |     0.73 |      0.43 |
|    0 |     511 |      487 |        0 |        0 |       0 |     420 |     418 |  0.73 |     6.07 |     6.17 |     0.72 |      0.45 |
|    0 |     512 |      522 |        0 |        0 |       0 |     454 |     447 |  0.72 |     5.49 |     5.66 |     0.72 |      0.42 |
|    0 |     513 |      507 |        0 |        0 |       0 |     433 |     430 |  0.78 |     6.39 |     6.47 |     0.72 |      0.44 |
|    0 |     514 |      535 |        0 |        0 |       0 |     458 |     453 |  0.78 |     6.32 |     6.43 |     0.72 |      0.44 |
|    0 |     515 |      491 |        0 |        0 |       0 |     432 |     430 |  0.77 |     6.32 |     6.37 |     0.73 |      0.43 |
|    0 |     516 |      493 |        0 |        0 |       0 |     418 |     411 |  0.8  |     6.95 |     7.11 |     0.72 |      0.43 |
|    0 |     517 |      526 |        0 |        0 |       0 |     434 |     431 |  0.8  |     6.44 |     6.52 |     0.73 |      0.41 |
|    0 |     518 |      504 |        0 |        0 |       0 |     436 |     431 |  0.81 |     7.12 |     7.24 |     0.73 |      0.43 |
|    0 |     519 |      533 |        0 |        0 |       0 |     464 |     459 |  0.8  |     7.03 |     7.17 |     0.72 |      0.44 |
|    0 |     520 |      508 |        0 |        0 |       0 |     413 |     407 |  0.8  |     6.82 |     6.97 |     0.74 |      0.41 |
|    0 |     521 |      520 |        0 |        0 |       0 |     436 |     433 |  0.82 |     6.46 |     6.53 |     0.73 |      0.43 |
|    0 |     522 |      484 |        1 |        0 |       0 |     403 |     397 |  0.76 |     6.09 |     6.17 |     0.72 |      0.43 |
|    0 |     523 |      503 |        0 |        0 |       0 |     438 |     432 |  0.79 |     5.89 |     6    |     0.73 |      0.42 |
|    0 |     524 |      521 |        0 |        0 |       0 |     444 |     442 |  0.82 |     6.22 |     6.29 |     0.73 |      0.44 |
|    0 |     525 |      518 |        0 |        0 |       0 |     448 |     442 |  0.82 |     5.88 |     5.99 |     0.73 |      0.44 |
|    0 |     526 |      516 |        0 |        0 |       0 |     448 |     442 |  0.79 |     6.55 |     6.68 |     0.73 |      0.44 |
|    0 |     527 |      492 |        0 |        0 |       0 |     418 |     416 |  0.76 |     5.92 |     5.99 |     0.73 |      0.43 |
|    0 |     528 |      501 |        0 |        0 |       0 |     419 |     416 |  0.86 |     6.57 |     6.58 |     0.74 |      0.4  |
|    0 |     529 |      512 |        2 |        0 |       0 |     452 |     451 |  0.84 |     7    |     7.08 |     0.73 |      0.42 |
|    0 |     530 |      514 |        0 |        0 |       0 |     436 |     433 |  0.74 |     6.09 |     6.14 |     0.72 |      0.43 |
|    0 |     531 |      510 |        2 |        0 |       0 |     439 |     433 |  0.85 |     6.39 |     6.44 |     0.74 |      0.41 |
|    0 |     532 |      521 |        0 |        0 |       0 |     454 |     452 |  0.86 |     7.3  |     7.36 |     0.74 |      0.4  |
|    0 |     533 |      514 |        0 |        0 |       0 |     437 |     432 |  0.84 |     6.15 |     6.28 |     0.73 |      0.45 |
|    0 |     534 |      483 |        0 |        0 |       0 |     410 |     406 |  0.86 |     7.17 |     7.3  |     0.74 |      0.41 |
|    0 |     535 |      516 |        0 |        0 |       0 |     427 |     421 |  0.83 |     6.68 |     6.77 |     0.74 |      0.42 |
|    0 |     536 |      502 |        0 |        0 |       0 |     434 |     429 |  0.86 |     6.76 |     6.83 |     0.73 |      0.41 |
|    0 |     537 |      512 |        0 |        0 |       0 |     435 |     429 |  0.82 |     6.21 |     6.3  |     0.74 |      0.41 |
|    0 |     538 |      511 |        2 |        0 |       0 |     430 |     427 |  0.8  |     6.34 |     6.41 |     0.74 |      0.41 |
|    0 |     539 |      506 |        0 |        0 |       0 |     430 |     426 |  0.87 |     6.83 |     6.88 |     0.73 |      0.41 |
|    0 |     540 |      501 |        0 |        0 |       0 |     427 |     425 |  0.89 |     6.33 |     6.39 |     0.73 |      0.43 |
|    0 |     541 |      519 |        8 |        0 |       0 |     447 |     445 |  0.88 |     6.43 |     6.42 |     0.74 |      0.41 |
|    0 |     542 |      503 |       28 |        0 |       0 |     450 |     443 |  0.91 |     7.47 |     7.83 |     0.74 |      0.41 |
|    0 |     543 |      492 |       16 |        0 |       0 |     426 |     425 |  0.83 |     5.89 |     6.09 |     0.73 |      0.44 |
|    0 |     544 |      509 |       10 |        0 |       0 |     435 |     432 |  0.89 |     6.76 |     6.86 |     0.74 |      0.42 |
|    0 |     545 |      519 |        2 |        0 |       0 |     443 |     439 |  0.93 |     6.53 |     6.61 |     0.74 |      0.4  |
|    0 |     546 |      490 |        0 |        0 |       0 |     415 |     411 |  0.86 |     6.02 |     6.07 |     0.74 |      0.42 |
|    0 |     547 |      530 |        0 |        0 |       0 |     442 |     440 |  0.88 |     6.72 |     6.79 |     0.74 |      0.41 |
|    0 |     548 |      471 |        2 |        0 |       0 |     408 |     405 |  0.87 |     6.24 |     6.36 |     0.73 |      0.42 |
|    0 |     549 |      510 |        0 |        0 |       0 |     440 |     434 |  0.91 |     6.93 |     6.98 |     0.75 |      0.42 |
|    0 |     550 |      530 |        0 |        0 |       0 |     438 |     435 |  0.94 |     8.48 |     8.54 |     0.75 |      0.39 |
|    0 |     551 |      503 |        0 |        0 |       0 |     434 |     432 |  0.97 |     6.72 |     6.79 |     0.74 |      0.42 |
|    0 |     552 |      537 |        0 |        0 |       0 |     459 |     453 |  0.89 |     6.34 |     6.41 |     0.75 |      0.43 |
|    0 |     553 |      500 |        0 |        0 |       0 |     416 |     409 |  0.88 |     6.03 |     6.17 |     0.75 |      0.4  |
|    0 |     554 |      497 |        0 |        0 |       0 |     427 |     424 |  0.92 |     6.76 |     6.85 |     0.75 |      0.4  |
|    0 |     555 |      520 |        0 |        0 |       0 |     445 |     441 |  1.04 |     8.17 |     8.27 |     0.75 |      0.41 |
|    0 |     556 |      504 |        0 |        0 |       0 |     430 |     427 |  0.98 |     7.34 |     7.46 |     0.75 |      0.41 |
|    0 |     557 |      497 |        2 |        0 |       0 |     424 |     422 |  0.99 |     7.43 |     7.43 |     0.75 |      0.39 |
|    0 |     558 |      511 |        2 |        0 |       0 |     427 |     422 |  0.88 |     6.58 |     6.68 |     0.75 |      0.4  |
|    0 |     559 |      508 |        0 |        0 |       0 |     422 |     419 |  0.95 |     6.74 |     6.82 |     0.75 |      0.42 |
|    0 |     560 |      504 |        0 |        0 |       0 |     441 |     437 |  0.96 |     7.12 |     7.13 |     0.76 |      0.39 |
|    0 |     561 |      507 |        0 |        0 |       0 |     442 |     439 |  0.96 |     6.67 |     6.71 |     0.76 |      0.4  |
|    0 |     562 |      532 |        0 |        0 |       0 |     453 |     448 |  1.01 |     6.78 |     6.87 |     0.76 |      0.4  |
|    0 |     563 |      504 |        0 |        0 |       0 |     422 |     412 |  1.05 |     8.15 |     8.32 |     0.76 |      0.4  |
|    0 |     564 |      500 |        0 |        0 |       0 |     426 |     423 |  0.99 |     6.47 |     6.52 |     0.75 |      0.43 |
|    0 |     565 |      509 |        0 |        0 |       0 |     432 |     428 |  0.99 |     7.01 |     7.17 |     0.75 |      0.4  |
|    0 |     566 |      537 |        0 |        0 |       0 |     462 |     458 |  0.97 |     6.48 |     6.5  |     0.76 |      0.39 |
|    0 |     567 |      463 |        0 |        0 |       0 |     398 |     395 |  1.07 |     7.62 |     7.67 |     0.76 |      0.41 |
|    0 |     568 |      509 |        0 |        0 |       0 |     424 |     419 |  1.02 |     6.84 |     6.89 |     0.76 |      0.4  |
|    0 |     569 |      509 |        0 |        0 |       0 |     427 |     424 |  1.05 |     7.71 |     7.68 |     0.77 |      0.4  |
|    0 |     570 |      530 |        0 |        0 |       0 |     447 |     443 |  1.11 |     8.15 |     8.22 |     0.76 |      0.41 |
|    0 |     571 |      496 |        0 |        0 |       0 |     423 |     416 |  1.06 |     6.71 |     6.84 |     0.76 |      0.43 |
|    0 |     572 |      532 |        0 |        0 |       0 |     445 |     439 |  1.01 |     5.98 |     6.1  |     0.76 |      0.4  |
|    0 |     573 |      498 |        0 |        0 |       0 |     431 |     428 |  1.15 |     7.77 |     7.87 |     0.77 |      0.39 |
|    0 |     574 |      500 |        0 |        0 |       0 |     408 |     402 |  1.03 |     6.11 |     6.2  |     0.77 |      0.42 |
|    0 |     575 |      506 |        0 |        0 |       0 |     431 |     427 |  1.18 |     8.08 |     8.21 |     0.77 |      0.39 |
|    0 |     576 |      501 |        0 |        0 |       0 |     440 |     436 |  1.04 |     6.25 |     6.3  |     0.77 |      0.41 |
|    0 |     577 |      516 |        0 |        0 |       0 |     432 |     428 |  1.12 |     7.19 |     7.29 |     0.77 |      0.38 |
|    0 |     578 |      497 |        0 |        0 |       0 |     411 |     409 |  1.13 |     7.35 |     7.4  |     0.76 |      0.41 |
|    0 |     579 |      531 |        0 |        0 |       0 |     463 |     461 |  1.16 |     6.38 |     6.44 |     0.78 |      0.41 |
|    0 |     580 |      483 |        0 |        0 |       0 |     421 |     416 |  1.05 |     5.93 |     6.03 |     0.76 |      0.42 |
|    0 |     581 |      533 |        0 |        0 |       0 |     461 |     456 |  1.23 |     8.11 |     8.25 |     0.78 |      0.4  |
|    0 |     582 |      503 |        0 |        0 |       0 |     422 |     417 |  1.22 |     8.48 |     8.64 |     0.77 |      0.42 |
|    0 |     583 |      499 |        0 |        0 |       0 |     425 |     417 |  1.17 |     7.45 |     7.57 |     0.78 |      0.39 |
|    0 |     584 |      525 |        0 |        0 |       0 |     440 |     435 |  1.24 |     7.65 |     7.82 |     0.77 |      0.4  |
|    0 |     585 |      505 |        0 |        0 |       0 |     436 |     434 |  1.29 |     7.17 |     7.24 |     0.79 |      0.4  |
|    0 |     586 |      517 |        0 |        0 |       0 |     433 |     431 |  1.15 |     6.1  |     6.16 |     0.77 |      0.41 |
|    0 |     587 |      496 |        0 |        0 |       0 |     428 |     418 |  1.34 |     8.48 |     8.69 |     0.79 |      0.38 |
|    0 |     588 |      513 |        0 |        0 |       0 |     439 |     437 |  1.21 |     7.78 |     7.84 |     0.78 |      0.37 |
|    0 |     589 |      510 |        0 |        0 |       0 |     438 |     434 |  1.34 |     8.37 |     8.45 |     0.79 |      0.39 |
|    0 |     590 |      507 |        0 |        0 |       0 |     440 |     433 |  1.29 |     7.65 |     7.83 |     0.78 |      0.38 |
|    0 |     591 |      507 |        0 |        0 |       0 |     437 |     437 |  1.27 |     6.57 |     6.62 |     0.79 |      0.4  |
|    0 |     592 |      497 |        0 |        0 |       0 |     426 |     421 |  1.3  |     8.15 |     8.3  |     0.78 |      0.39 |
|    0 |     593 |      524 |        0 |        0 |       0 |     438 |     434 |  1.4  |     8.25 |     8.39 |     0.8  |      0.38 |
|    0 |     594 |      506 |        0 |        0 |       0 |     435 |     428 |  1.25 |     6.77 |     6.9  |     0.79 |      0.4  |
|    0 |     595 |      525 |        0 |        0 |       0 |     442 |     435 |  1.34 |     7.1  |     7.25 |     0.79 |      0.39 |
|    0 |     596 |      487 |        0 |        0 |       0 |     418 |     412 |  1.3  |     6.87 |     7.02 |     0.79 |      0.39 |
|    0 |     597 |      504 |        0 |        0 |       0 |     430 |     428 |  1.49 |     9.76 |     9.85 |     0.8  |      0.38 |
|    0 |     598 |      504 |        0 |        0 |       0 |     431 |     427 |  1.44 |     7.86 |     8    |     0.79 |      0.39 |
|    0 |     599 |      522 |        0 |        0 |       0 |     439 |     432 |  1.32 |     6.19 |     6.35 |     0.8  |      0.38 |
|    0 |     600 |      514 |        0 |        0 |       0 |     457 |     453 |  1.31 |     8.24 |     8.32 |     0.79 |      0.37 |
|    0 |     601 |      527 |        0 |        0 |       0 |     456 |     453 |  1.49 |     9.29 |     9.36 |     0.8  |      0.39 |
|    0 |     602 |      485 |        0 |        0 |       0 |     413 |     411 |  1.32 |     8.23 |     8.23 |     0.79 |      0.39 |
|    0 |     603 |      514 |        0 |        0 |       0 |     442 |     438 |  1.57 |     9.02 |     9.18 |     0.8  |      0.38 |
|    0 |     604 |      520 |        0 |        0 |       0 |     430 |     429 |  1.37 |     7.45 |     7.46 |     0.79 |      0.39 |
|    0 |     605 |      512 |        0 |        0 |       0 |     431 |     423 |  1.48 |     6.89 |     7.02 |     0.8  |      0.38 |
|    0 |     606 |      510 |        0 |        0 |       0 |     428 |     422 |  1.38 |     7.38 |     7.56 |     0.79 |      0.39 |
|    0 |     607 |      509 |        0 |        0 |       0 |     432 |     425 |  1.41 |     8.23 |     8.35 |     0.8  |      0.39 |
|    0 |     608 |      492 |        0 |        0 |       0 |     413 |     411 |  1.45 |     8.2  |     8.27 |     0.8  |      0.36 |
|    0 |     609 |      525 |        0 |        0 |       0 |     451 |     445 |  1.51 |     8.09 |     8.22 |     0.8  |      0.39 |
|    0 |     610 |      490 |        0 |        0 |       0 |     428 |     424 |  1.43 |     9.16 |     9.27 |     0.8  |      0.39 |
|    0 |     611 |      530 |        0 |        0 |       0 |     455 |     445 |  1.4  |     7.9  |     8.11 |     0.79 |      0.4  |
|    0 |     612 |      489 |        0 |        0 |       0 |     420 |     415 |  1.29 |     6.03 |     6.12 |     0.79 |      0.39 |
|    0 |     613 |      495 |        0 |        0 |       0 |     422 |     418 |  1.37 |     7.33 |     7.45 |     0.8  |      0.37 |
|    0 |     614 |      519 |        0 |        0 |       0 |     448 |     446 |  1.48 |     8.24 |     8.34 |     0.8  |      0.39 |
|    0 |     615 |      494 |        0 |        0 |       0 |     432 |     424 |  1.38 |     7.08 |     7.21 |     0.79 |      0.37 |
|    0 |     616 |      528 |        0 |        0 |       0 |     444 |     439 |  1.37 |     7.8  |     7.95 |     0.79 |      0.37 |
|    0 |     617 |      525 |        0 |        0 |       0 |     443 |     438 |  1.42 |     8.19 |     8.34 |     0.79 |      0.39 |
|    0 |     618 |      500 |        0 |        0 |       0 |     415 |     412 |  1.37 |     7.65 |     7.68 |     0.79 |      0.38 |
|    0 |     619 |      527 |        0 |        0 |       0 |     454 |     452 |  1.42 |     8.12 |     8.14 |     0.8  |      0.39 |
|    0 |     620 |      503 |        0 |        0 |       0 |     429 |     424 |  1.35 |     7.93 |     8.05 |     0.79 |      0.39 |
|    0 |     621 |      485 |        0 |        0 |       0 |     415 |     407 |  1.35 |     7.18 |     7.38 |     0.79 |      0.41 |
|    0 |     622 |      503 |        0 |        0 |       0 |     427 |     426 |  1.29 |     7.03 |     7.03 |     0.79 |      0.41 |
|    0 |     623 |      516 |        0 |        0 |       0 |     440 |     436 |  1.32 |     7.56 |     7.59 |     0.79 |      0.39 |
|    0 |     624 |      500 |        0 |        0 |       0 |     417 |     415 |  1.33 |     8.65 |     8.69 |     0.79 |      0.38 |
|    0 |     625 |      503 |        0 |        0 |       0 |     430 |     425 |  1.24 |     8.33 |     8.37 |     0.78 |      0.39 |
|    0 |     626 |      529 |        0 |        0 |       0 |     447 |     442 |  1.28 |     6.85 |     6.91 |     0.78 |      0.41 |
|    0 |     627 |      521 |        0 |        0 |       0 |     434 |     428 |  1.42 |     9.23 |     9.43 |     0.79 |      0.37 |
|    0 |     628 |      509 |        0 |        0 |       0 |     433 |     431 |  1.33 |     8.23 |     8.26 |     0.79 |      0.39 |
|    0 |     629 |      504 |        0 |        0 |       0 |     433 |     429 |  1.25 |     8.81 |     8.86 |     0.77 |      0.41 |
|    0 |     630 |      514 |        0 |        0 |       0 |     439 |     433 |  1.3  |     7.5  |     7.6  |     0.78 |      0.4  |
|    0 |     631 |      515 |        0 |        0 |       0 |     431 |     430 |  1.11 |     6.34 |     6.27 |     0.78 |      0.38 |
|    0 |     632 |      519 |        0 |        0 |       0 |     446 |     444 |  1.19 |     9.43 |     9.44 |     0.77 |      0.41 |
|    0 |     633 |      483 |        0 |        0 |       0 |     419 |     415 |  1.17 |     7.97 |     7.99 |     0.77 |      0.4  |
|    0 |     634 |      510 |        0 |        0 |       0 |     440 |     435 |  1.21 |     7.61 |     7.74 |     0.78 |      0.4  |
|    0 |     635 |      483 |        0 |        0 |       0 |     403 |     395 |  1.25 |     9.51 |     9.65 |     0.77 |      0.4  |
|    0 |     636 |      529 |        0 |        0 |       0 |     443 |     437 |  1.12 |     7.24 |     7.27 |     0.77 |      0.41 |
|    0 |     637 |      514 |        0 |        0 |       0 |     451 |     446 |  1.09 |     7.75 |     7.79 |     0.76 |      0.41 |
|    0 |     638 |      494 |        0 |        0 |       0 |     416 |     409 |  1.12 |     8.28 |     8.37 |     0.77 |      0.43 |
|    0 |     639 |      537 |        0 |        0 |       0 |     447 |     440 |  1.13 |     6.89 |     7.02 |     0.77 |      0.42 |
|    0 |     640 |      507 |        0 |        0 |       0 |     445 |     440 |  1.26 |     9.42 |     9.49 |     0.77 |      0.39 |
|    0 |     641 |      475 |        0 |        0 |       0 |     409 |     409 |  1.01 |     7.77 |     7.63 |     0.76 |      0.42 |
|    0 |     642 |      531 |        0 |        0 |       0 |     452 |     447 |  1.03 |     7.66 |     7.67 |     0.75 |      0.44 |
|    0 |     643 |      500 |        0 |        0 |       0 |     412 |     401 |  1.05 |     6.99 |     7.17 |     0.76 |      0.4  |
|    0 |     644 |      521 |        0 |        0 |       0 |     452 |     445 |  1.1  |     6.93 |     7.08 |     0.76 |      0.41 |
|    0 |     645 |      514 |        0 |        0 |       0 |     427 |     423 |  1.14 |     7.31 |     7.33 |     0.77 |      0.39 |
|    0 |     646 |      486 |        0 |        0 |       0 |     413 |     411 |  1.02 |     6.9  |     6.91 |     0.76 |      0.42 |
|    0 |     647 |      536 |        0 |        0 |       0 |     449 |     445 |  1.04 |     7.76 |     7.76 |     0.75 |      0.42 |
|    0 |     648 |      485 |        0 |        0 |       0 |     407 |     403 |  0.99 |     6.87 |     6.86 |     0.76 |      0.41 |
|    0 |     649 |      506 |        0 |        0 |       0 |     443 |     441 |  1.03 |     8.04 |     8.06 |     0.75 |      0.41 |
|    0 |     650 |      494 |        0 |        0 |       0 |     422 |     418 |  1.06 |     7.24 |     7.35 |     0.75 |      0.39 |
|    0 |     651 |      520 |        0 |        0 |       0 |     456 |     452 |  1.03 |     8.13 |     8.14 |     0.76 |      0.41 |
|    0 |     652 |      511 |        0 |        0 |       0 |     433 |     429 |  0.99 |     8.52 |     8.56 |     0.74 |      0.42 |
|    0 |     653 |      507 |        0 |        0 |       0 |     428 |     422 |  1.02 |     7.82 |     7.88 |     0.76 |      0.41 |
|    0 |     654 |      525 |        0 |        0 |       0 |     443 |     439 |  0.97 |     7.42 |     7.44 |     0.75 |      0.41 |
|    0 |     655 |      489 |        0 |        0 |       0 |     426 |     423 |  0.95 |     6.62 |     6.72 |     0.74 |      0.43 |
|    0 |     656 |      497 |        0 |        0 |       0 |     422 |     418 |  0.97 |     7.18 |     7.25 |     0.75 |      0.41 |
|    0 |     657 |      518 |        0 |        0 |       0 |     432 |     425 |  0.93 |     6.84 |     6.94 |     0.75 |      0.4  |
|    0 |     658 |      516 |        0 |        0 |       0 |     440 |     438 |  0.99 |     7.83 |     7.84 |     0.75 |      0.4  |
|    0 |     659 |      521 |        0 |        0 |       0 |     443 |     435 |  0.98 |     9    |     9.13 |     0.75 |      0.42 |
|    0 |     660 |      482 |        0 |        0 |       0 |     408 |     405 |  0.93 |     8.25 |     8.31 |     0.74 |      0.39 |
|    0 |     661 |      535 |        0 |        0 |       0 |     475 |     473 |  0.96 |     8.22 |     8.25 |     0.75 |      0.43 |
|    0 |     662 |      509 |        0 |        0 |       0 |     434 |     428 |  0.81 |     5.38 |     5.46 |     0.74 |      0.4  |
|    0 |     663 |      513 |        0 |        0 |       0 |     444 |     434 |  0.96 |     8.4  |     8.56 |     0.73 |      0.42 |
|    0 |     664 |      487 |        0 |        0 |       0 |     418 |     416 |  0.92 |     7.24 |     7.27 |     0.74 |      0.43 |
|    0 |     665 |      529 |        0 |        0 |       0 |     453 |     448 |  0.95 |     7.22 |     7.28 |     0.74 |      0.41 |
|    0 |     666 |      509 |        0 |        0 |       0 |     436 |     434 |  0.85 |     6.34 |     6.37 |     0.73 |      0.42 |
|    0 |     667 |      510 |        0 |        0 |       0 |     446 |     440 |  0.88 |     6.69 |     6.74 |     0.74 |      0.41 |
|    0 |     668 |      494 |        0 |        0 |       0 |     419 |     408 |  0.97 |     8.39 |     8.64 |     0.74 |      0.44 |
|    0 |     669 |      520 |        0 |        0 |       0 |     443 |     439 |  0.81 |     6.22 |     6.3  |     0.74 |      0.41 |
|    0 |     670 |      513 |        0 |        0 |       0 |     432 |     430 |  0.84 |     6.66 |     6.65 |     0.73 |      0.43 |
|    0 |     671 |      483 |        0 |        0 |       0 |     409 |     406 |  0.92 |     8.38 |     8.37 |     0.73 |      0.41 |
|    0 |     672 |      502 |        1 |        0 |       0 |     447 |     444 |  0.89 |     7.17 |     7.2  |     0.74 |      0.4  |
|    0 |     673 |      538 |        0 |        0 |       0 |     465 |     461 |  0.91 |     7.71 |     7.75 |     0.74 |      0.42 |
|    0 |     674 |      502 |        0 |        0 |       0 |     425 |     417 |  0.86 |     7.84 |     7.99 |     0.74 |      0.41 |
|    0 |     675 |      532 |        0 |        0 |       0 |     454 |     447 |  0.85 |     7.22 |     7.34 |     0.73 |      0.41 |
|    0 |     676 |      496 |        1 |        0 |       0 |     419 |     413 |  0.78 |     7.19 |     7.28 |     0.72 |      0.43 |
|    0 |     677 |      504 |        0 |        0 |       0 |     427 |     424 |  0.88 |     7.81 |     7.85 |     0.73 |      0.42 |
|    0 |     678 |      475 |        0 |        0 |       0 |     399 |     394 |  0.9  |     8.11 |     8.21 |     0.73 |      0.41 |
|    0 |     679 |      541 |        0 |        0 |       0 |     458 |     453 |  0.86 |     7.29 |     7.35 |     0.74 |      0.41 |
|    0 |     680 |      503 |        0 |        0 |       0 |     426 |     422 |  0.87 |     7.24 |     7.33 |     0.73 |      0.41 |
|    0 |     681 |      526 |        0 |        0 |       0 |     445 |     442 |  0.86 |     7.01 |     7.05 |     0.73 |      0.43 |
|    0 |     682 |      474 |        0 |        0 |       0 |     383 |     379 |  0.82 |     7.37 |     7.48 |     0.72 |      0.42 |
|    0 |     683 |      571 |        0 |        0 |       0 |     476 |     471 |  0.74 |     6.83 |     6.89 |     0.72 |      0.45 |
|    0 |     684 |      451 |        0 |        0 |       0 |     390 |     386 |  0.95 |     9.59 |     9.64 |     0.75 |      0.4  |
|    0 |     685 |      523 |        0 |        0 |       0 |     450 |     448 |  0.86 |     7.44 |     7.42 |     0.74 |      0.43 |
|    0 |     686 |      507 |        0 |        0 |       0 |     436 |     431 |  0.85 |     7.51 |     7.61 |     0.73 |      0.42 |
|    0 |     687 |      503 |        0 |        0 |       0 |     417 |     411 |  0.81 |     7.79 |     7.88 |     0.73 |      0.42 |
|    0 |     688 |      500 |        0 |        0 |       0 |     422 |     416 |  0.81 |     7.36 |     7.4  |     0.73 |      0.44 |
|    0 |     689 |      561 |        0 |        0 |       0 |     471 |     459 |  0.75 |     6.74 |     6.97 |     0.71 |      0.47 |
|    0 |     690 |      523 |        0 |        0 |       0 |     454 |     448 |  0.82 |     7.68 |     7.75 |     0.73 |      0.42 |
|    0 |     691 |      458 |        0 |        0 |       0 |     406 |     402 |  0.81 |     7.01 |     7.04 |     0.73 |      0.42 |
|    0 |     692 |      505 |        0 |        0 |       0 |     415 |     410 |  0.8  |     7.18 |     7.28 |     0.73 |      0.43 |
|    0 |     693 |      498 |        0 |        0 |       0 |     435 |     432 |  0.78 |     7.28 |     7.29 |     0.73 |      0.41 |
|    0 |     694 |      528 |        0 |        0 |       0 |     456 |     454 |  0.81 |     7.16 |     7.18 |     0.73 |      0.42 |
|    0 |     695 |      506 |        0 |        0 |       0 |     410 |     406 |  0.75 |     7.06 |     7.07 |     0.72 |      0.43 |
|    0 |     696 |      533 |        0 |        0 |       0 |     463 |     454 |  0.7  |     6.74 |     6.89 |     0.72 |      0.46 |
|    0 |     697 |      506 |        0 |        0 |       0 |     413 |     406 |  0.87 |     8.03 |     8.21 |     0.73 |      0.41 |
|    0 |     698 |      505 |        1 |        0 |       0 |     437 |     435 |  0.79 |     7.18 |     7.21 |     0.72 |      0.44 |
|    0 |     699 |      494 |        0 |        0 |       0 |     420 |     414 |  0.81 |     6.97 |     7.09 |     0.73 |      0.45 |
|    0 |     700 |      487 |        0 |        0 |       0 |     408 |     406 |  0.8  |     7.44 |     7.52 |     0.72 |      0.43 |
|    0 |     701 |      536 |        0 |        0 |       0 |     460 |     451 |  0.8  |     7.24 |     7.37 |     0.73 |      0.45 |
|    0 |     702 |      511 |        0 |        0 |       0 |     454 |     448 |  0.7  |     6.14 |     6.19 |     0.71 |      0.44 |
|    0 |     703 |      525 |        0 |        0 |       0 |     454 |     443 |  0.74 |     6.58 |     6.73 |     0.73 |      0.42 |
|    0 |     704 |      488 |        0 |        0 |       0 |     414 |     410 |  0.74 |     6.15 |     6.18 |     0.72 |      0.42 |
|    0 |     705 |      500 |        1 |        0 |       0 |     437 |     433 |  0.8  |     7.45 |     7.56 |     0.72 |      0.42 |
|    0 |     706 |      495 |        0 |        0 |       0 |     396 |     391 |  0.75 |     6.93 |     7.01 |     0.72 |      0.44 |
|    0 |     707 |      531 |        0 |        0 |       0 |     450 |     444 |  0.73 |     6.88 |     6.99 |     0.72 |      0.45 |
|    0 |     708 |      516 |        1 |        0 |       0 |     449 |     446 |  0.79 |     7.09 |     7.1  |     0.73 |      0.4  |
|    0 |     709 |      516 |        0 |        0 |       0 |     441 |     435 |  0.73 |     7.36 |     7.46 |     0.71 |      0.47 |
|    0 |     710 |      525 |        0 |        0 |       0 |     435 |     432 |  0.72 |     6.62 |     6.62 |     0.71 |      0.46 |
|    0 |     711 |      504 |        0 |        0 |       0 |     426 |     424 |  0.82 |     7.95 |     7.95 |     0.73 |      0.43 |
|    0 |     712 |      498 |        1 |        0 |       0 |     416 |     412 |  0.79 |     7.61 |     7.7  |     0.73 |      0.44 |
|    0 |     713 |      468 |        3 |        0 |       0 |     403 |     399 |  0.74 |     7.64 |     7.71 |     0.73 |      0.41 |
|    0 |     714 |      517 |        0 |        0 |       0 |     448 |     443 |  0.76 |     8.03 |     8.15 |     0.73 |      0.44 |
|    0 |     715 |      516 |        1 |        0 |       0 |     441 |     435 |  0.7  |     6.26 |     6.32 |     0.72 |      0.44 |
|    0 |     716 |      517 |        0 |        0 |       0 |     443 |     440 |  0.76 |     7.38 |     7.47 |     0.72 |      0.43 |
|    0 |     717 |      539 |        4 |        0 |       0 |     461 |     457 |  0.68 |     6.71 |     6.8  |     0.72 |      0.43 |
|    0 |     718 |      524 |        5 |        0 |       0 |     446 |     446 |  0.74 |     7.17 |     7.17 |     0.72 |      0.44 |
|    0 |     719 |      450 |       11 |        0 |       0 |     401 |     397 |  0.71 |     6.14 |     6.19 |     0.71 |      0.46 |
|    0 |     720 |      272 |      207 |        0 |       0 |     406 |     402 |  0.77 |     7.95 |     8.61 |     0.73 |      0.49 |
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+

 Summary vs resolution
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+
|   ID |   d min |   # full |   # part |   # over |   # ice |   # sum |   # prf |   Ibg |   I/sigI |   I/sigI |   CC prf |   RMSD XY |
|      |         |          |          |          |         |         |         |       |    (sum) |    (prf) |          |           |
|------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------|
|    0 |    1.21 |      381 |        3 |        0 |       0 |     195 |     105 |  0.08 |     0.27 |     0.22 |     0.5  |      0.96 |
|    0 |    1.23 |     1332 |       10 |        0 |       0 |     952 |     777 |  0.09 |     0.26 |     0.2  |     0.51 |      0.92 |
|    0 |    1.25 |     3233 |       22 |        0 |       0 |    2606 |    2241 |  0.1  |     0.27 |     0.23 |     0.52 |      0.87 |
|    0 |    1.28 |     5312 |       39 |        0 |       0 |    4369 |    3991 |  0.12 |     0.32 |     0.28 |     0.53 |      0.8  |
|    0 |    1.3  |     7648 |       51 |        0 |       0 |    6425 |    5990 |  0.13 |     0.41 |     0.36 |     0.55 |      0.74 |
|    0 |    1.33 |    11094 |       74 |        0 |       0 |    9253 |    8730 |  0.15 |     0.46 |     0.42 |     0.56 |      0.69 |
|    0 |    1.36 |    15371 |       93 |        0 |       0 |   12969 |   12296 |  0.18 |     0.54 |     0.47 |     0.58 |      0.63 |
|    0 |    1.4  |    20779 |      132 |        0 |       0 |   17870 |   17269 |  0.21 |     0.64 |     0.56 |     0.6  |      0.59 |
|    0 |    1.43 |    23748 |      169 |        0 |       0 |   20760 |   20507 |  0.25 |     0.74 |     0.66 |     0.62 |      0.55 |
|    0 |    1.48 |    24455 |      176 |        0 |       0 |   20311 |   20201 |  0.28 |     1    |     0.9  |     0.64 |      0.51 |
|    0 |    1.52 |    24341 |      172 |        0 |       0 |   20604 |   20493 |  0.32 |     1.28 |     1.18 |     0.66 |      0.47 |
|    0 |    1.58 |    24576 |      170 |        0 |       0 |   21432 |   21323 |  0.37 |     1.57 |     1.47 |     0.69 |      0.44 |
|    0 |    1.64 |    24712 |      186 |        0 |       0 |   21141 |   21033 |  0.43 |     1.93 |     1.84 |     0.72 |      0.41 |
|    0 |    1.72 |    25045 |      171 |        0 |       0 |   21338 |   21230 |  0.52 |     2.71 |     2.61 |     0.75 |      0.38 |
|    0 |    1.81 |    25192 |      187 |        0 |       0 |   21656 |   21531 |  0.66 |     3.85 |     3.78 |     0.8  |      0.35 |
|    0 |    1.92 |    25082 |      235 |        0 |       0 |   21759 |   21623 |  0.89 |     5.77 |     5.75 |     0.84 |      0.32 |
|    0 |    2.07 |    25616 |      184 |        0 |       0 |   22282 |   22165 |  1.15 |     8.1  |     8.18 |     0.87 |      0.31 |
|    0 |    2.28 |    25697 |      179 |        0 |       0 |   22621 |   22507 |  1.38 |    11.22 |    11.44 |     0.89 |      0.26 |
|    0 |    2.61 |    26130 |      181 |        0 |       0 |   22432 |   22314 |  2.12 |    18.05 |    18.42 |     0.89 |      0.25 |
|    0 |    3.28 |    26279 |      244 |        0 |       0 |   22938 |   22800 |  3.59 |    41.78 |    42.64 |     0.87 |      0.24 |
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+

 Summary for experiment 0
+---------------------------------------+-----------+----------+--------+
| Item                                  |   Overall |      Low |   High |
|---------------------------------------+-----------+----------+--------|
| dmin                                  |      1.21 |     3.28 |   1.21 |
| dmax                                  |     69.3  |    69.3  |   1.23 |
| number fully recorded                 | 366023    | 26279    | 381    |
| number partially recorded             |   2678    |   244    |   3    |
| number with invalid background pixels |  95694    |  5239    | 373    |
| number with invalid foreground pixels |  54355    |  3548    | 189    |
| number with overloaded pixels         |      0    |     0    |   0    |
| number in powder rings                |      0    |     0    |   0    |
| number processed with summation       | 313913    | 22938    | 195    |
| number processed with profile fitting | 309126    | 22800    | 105    |
| number failed in background modelling |   1570    |   648    |   0    |
| number failed in summation            |  54355    |  3548    | 189    |
| number failed in profile fitting      |  59142    |  3686    | 279    |
| ibg                                   |      0.88 |     3.59 |   0.08 |
| i/sigi (summation)                    |      7.1  |    41.78 |   0.27 |
| i/sigi (profile fitting)              |      7.22 |    42.64 |   0.22 |
| cc prf                                |      0.74 |     0.87 |   0.5  |
| cc_pearson sum/prf                    |      1    |     1    |   0.62 |
| cc_spearman sum/prf                   |      0.95 |     1    |   0.62 |
+---------------------------------------+-----------+----------+--------+

Timing information for integration
+-------------------+----------------+
| Read time         | 64.29 seconds  |
| Extract time      | 2.36 seconds   |
| Pre-process time  | 0.37 seconds   |
| Process time      | 151.08 seconds |
| Post-process time | 0.00 seconds   |
| Total time        | 220.29 seconds |
+-------------------+----------------+

Saving 368701 reflections to integrated.refl
Saving the experiments to integrated.expt

Checking the log output, we see that after loading in the reference reflections from refined.refl, new predictions are made up to the highest resolution at the corner of the detector. This is fine, but if we wanted to we could have adjusted the resolution limits using parameters prediction.d_min and prediction.d_max. The predictions are made using the scan-varying crystal model recorded in refined.expt. This ensures that prediction is made using the smoothly varying lattice and orientation that we determined in the refinement step. As this scan-varying model was determined in advance of integration, each of the integration jobs is independent and we can take advantage of true parallelism during processing.

The profile model is calculated from the reflections in refined.refl. First reflections with a too small ‘zeta’ factor are filtered out. This essentially removes reflections that are too close to the spindle axis. In general these reflections require significant Lorentz corrections and as a result have less trustworthy intensities anyway. From the remaining reflection shoeboxes, the average beam divergence and reflecting range is calculated, providing the two Gaussian width parameters \(\sigma_D\) and \(\sigma_M\) used in the 3D profile model.

Following this, independent integration jobs are set up. These jobs overlap, so reflections are assigned to one or more jobs. What follows are blocks of information specific to each integration job.

After these jobs are finished, the reflections are ‘post-processed’, which includes the application of the LP correction to the intensities. Then summary tables are printed giving quality statistics first by frame, and then by resolution bin.

Symmetry analysis

After integration, further assessments of the crystal symmetry are possible. Previously, we made an assessment of the lattice symmetry (i.e. the symmetry of the diffraction spot positions), however now we have determined a set of intensity values and can investigate the full symmetry of the diffraction pattern (i.e. spot positions and intensities). The symmetry analysis consists of two stages, determining the laue group symmetry and analysing absent reflections to suggest the space group symmetry.

dials.symmetry integrated.expt integrated.refl

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:

input {
  experiments = integrated.expt
  reflections = integrated.refl
}

================================================================================

Performing Laue group analysis

Filtering reflections for dataset 0
Read 368701 predicted reflections
Selected 309126 reflections integrated by profile and summation methods
Combined 38 partial reflections with other partial reflections
Removed 13 reflections below partiality threshold
Removed 0 intensity.sum.value reflections with I/Sig(I) < -5
Removed 1 intensity.prf.value reflections with I/Sig(I) < -5
A round of outlier rejection has been performed, 
147 outliers have been identified. 

Patterson group: C 1 2/m 1 (x-y,x+y,z)

--------------------------------------------------------------------------------

Normalising intensities for dataset 1

ML estimate of overall B_cart value:
  14.31, -0.91, -0.71
         14.33, -1.30
                10.87
ML estimate of  -log of scale factor:
  -2.16

--------------------------------------------------------------------------------

Estimation of resolution for Laue group analysis

Resolution estimate from <I>/<σ(I)> > 4.0 : 2.06
Resolution estimate from CC½ > 0.60: 1.40
High resolution limit set to: 1.40
Selecting 154363 reflections with d > 1.40

Input crystal symmetry:
Unit cell: (40.5515, 40.5515, 69.2884, 91.9961, 91.9961, 98.0721)
Space group: P 1 (No. 1)
Change of basis op to minimum cell: a,b,c
Crystal symmetry in minimum cell:
Unit cell: (40.5515, 40.5515, 69.2884, 91.9961, 91.9961, 98.0721)
Space group: P 1 (No. 1)
Lattice point group: C 1 2/m 1 (x-y,x+y,z)

Overall CC for 20000 unrelated pairs: 0.374
Estimated expectation value of true correlation coefficient E(CC) = 0.927
Estimated sd(CC) = 0.675 / sqrt(N)
Estimated E(CC) of true correlation coefficient from identity = 0.961

--------------------------------------------------------------------------------

Scoring individual symmetry elements

+--------------+--------+------+--------+-----+---------------+
|   likelihood |   Z-CC |   CC |      N |     | Operator      |
|--------------+--------+------+--------+-----+---------------|
|        0.929 |   9.93 | 0.99 | 150192 | *** | 1 |(0, 0, 0)  |
|        0.927 |   9.83 | 0.98 | 149462 | *** | 2 |(-1, 1, 0) |
+--------------+--------+------+--------+-----+---------------+

--------------------------------------------------------------------------------

Scoring all possible sub-groups

+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+
| Patterson group   |     |   Likelihood |   NetZcc |   Zcc+ |   Zcc- |   CC |   CC- |   delta | Reindex operator   |
|-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------|
| C 1 2/m 1         | *** |        0.927 |     9.88 |   9.88 |   0    | 0.99 |  0    |       0 | a+b,-a+b,c         |
| P -1              |     |        0.073 |     0.1  |   9.93 |   9.83 | 0.99 |  0.98 |       0 | a,b,c              |
+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+

Best solution: C 1 2/m 1
Unit cell: (53.1698, 61.2427, 69.2884, 90, 93.0456, 90)
Reindex operator: a+b,-a+b,c
Laue group probability: 0.927
Laue group confidence: 0.890

+-------------------+--------------------------+
| Patterson group   | Corresponding MX group   |
|-------------------+--------------------------|
| C 1 2/m 1         | C 1 2 1                  |
+-------------------+--------------------------+
================================================================================

Analysing systematic absences

Laue group: C 1 2/m 1
No absences to check for this laue group

Saving reindexed experiments to symmetrized.expt in space group C 1 2 1
Saving 368701 reindexed reflections to symmetrized.refl

The laue group symmetry is the 3D rotational symmetry of the diffraction pattern plus inversion symmetry (due to Friedel’s law that I(h,k,l) = I(-h,-k,-l) when absorption is negligible). To determine the laue group symmetry, all possible symmetry operations of the lattice are scored by comparing the correlation of reflection intensities that would be equivalent under a given operation. The scores for individual symmetry operations are then combined to score the potential laue groups.

Scoring all possible sub-groups

+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+
| Patterson group   |     |   Likelihood |   NetZcc |   Zcc+ |   Zcc- |   CC |   CC- |   delta | Reindex operator   |
|-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------|
| C 1 2/m 1         | *** |        0.927 |     9.88 |   9.88 |   0    | 0.99 |  0    |       0 | a+b,-a+b,c         |
| P -1              |     |        0.073 |     0.1  |   9.93 |   9.83 | 0.99 |  0.98 |       0 | a,b,c              |
+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+

Best solution: C 1 2/m 1
Unit cell: (53.1698, 61.2427, 69.2884, 90, 93.0456, 90)
Reindex operator: a+b,-a+b,c
Laue group probability: 0.927
Laue group confidence: 0.890

+-------------------+--------------------------+
| Patterson group   | Corresponding MX group   |
|-------------------+--------------------------|
| C 1 2/m 1         | C 1 2 1                  |
+-------------------+--------------------------+
================================================================================

Here we see clearly that the best solution is given by C 1 2/m 1, with a high likelihood. For macromolecules, their chirality means that mirror symmetry is not allowed (the ‘m’ in C 1 2/m 1), therefore the determined symmetry relevant for MX at this point is C2. For some laue groups, there are multiple space groups possible due additional translational symmetries (e.g P 2, P 21 for laue group P2/m), which requires an additional analysis of systematic absences. However this is not the case for C 1 2/m 1, therefore the final result of the analysis is the space group C2, in agreement with the result from dials.refine_bravais_settings.

Scaling and Merging

Before the data can be reduced for structure solution, the intensity values must be corrected for experimental effects which occur prior to the reflection being measured on the detector. These primarily include sample illumination/absorption effects and radiation damage, which result in symmetry-equivalent reflections having unequal measured intensities (i.e. a systematic effect in addition to any variance due to counting statistics). Thus the purpose of scaling is to determine a scale factor to apply to each reflection, such that the scaled intensities are representative of the ‘true’ scattering intensity from the contents of the unit cell.

During scaling, a scaling model is created, from which scale factors are calculated for each reflection. Three physically motivated corrections are used to create an scaling model, in a similar manner to that used in the program aimless. This model consists of a smoothly varying scale factor as a function of rotation angle, a smoothly varying B-factor to account for radiation damage as a function of rotation angle and an absorption surface correction, dependent on the direction of the incoming and scattered beam vector relative to the crystal.

dials.scale symmetrized.expt symmetrized.refl

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
DIALS 3.dev.293-g84a2657ec
The following parameters have been modified:
input {
  experiments = symmetrized.expt
  reflections = symmetrized.refl
}

Checking for the existence of a reflection table 
containing multiple datasets 

Found 1 reflection tables & 1 experiments in total.

Dataset ids are: 0 

Space group being used during scaling is C 1 2 1

Scaling models have been initialised for all experiments.

================================================================================

The experiment id for this dataset is 0.
The scaling model type being applied is physical. 

Applying filter of min_isigi > -5.0, partiality > 0.4
Combined 38 partial reflections with other partial reflections
Excluding 56446/368663 reflections
Reflections passing individual criteria:
criterion: user excluded, reflections: 1968
criterion: excluded for scaling, reflections: 56446

The following corrections will be applied to this dataset: 

+--------------+----------------+
| correction   |   n_parameters |
|--------------+----------------|
| scale        |             26 |
| decay        |             20 |
| absorption   |             24 |
+--------------+----------------+
A round of outlier rejection has been performed, 
9124 outliers have been identified. 

311923 reflections were preselected for scale factor determination 
out of 312217 suitable reflections: 
Reflections passing individual criteria:
criterion: in I/sigma range (I/sig > -5.0), reflections: 312216
criterion: above min partiality ( > 0.95), reflections: 311924

Randomly selected 7748/48239 groups (m>1) to use for scaling model
minimisation (49909 reflections)
Completed preprocessing and initialisation for this dataset.

================================================================================

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with an LBFGS minimizer. 

Time taken for refinement 2.84

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  48456 |  1.2239  |
|      1 |  48456 |  1.1904  |
|      2 |  48456 |  1.0862  |
|      3 |  48456 |  1.0506  |
|      4 |  48456 |  0.99239 |
|      5 |  48456 |  0.90816 |
|      6 |  48456 |  0.8936  |
|      7 |  48456 |  0.87371 |
|      8 |  48456 |  0.85117 |
|      9 |  48456 |  0.84158 |
|     10 |  48456 |  0.83477 |
|     11 |  48456 |  0.83373 |
|     12 |  48456 |  0.83252 |
|     13 |  48456 |  0.8318  |
|     14 |  48456 |  0.83133 |
|     15 |  48456 |  0.83111 |
|     16 |  48456 |  0.83063 |
|     17 |  48456 |  0.83058 |
+--------+--------+----------+
RMSD no longer decreasing
lbfgs minimizer stop: callback_after_step is True

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
850 outliers have been identified. 

Performing profile/summation intensity optimisation.
+-----------------+---------+---------+
| Combination     |   CC1/2 |   Rmeas |
|-----------------+---------+---------|
| prf only        | 0.99921 | 0.0596  |
| sum only        | 0.99916 | 0.06614 |
| Imid = 288.28   | 0.99922 | 0.05945 |
| Imid = 39733.21 | 0.99921 | 0.0596  |
| Imid = 3973.32  | 0.99921 | 0.0595  |
| Imid = 397.33   | 0.99922 | 0.05934 |
| Imid = 39.73    | 0.99918 | 0.0621  |
+-----------------+---------+---------+
Combined intensities with Imid = 397.33 determined to be best for scaling. 

A round of outlier rejection has been performed, 
794 outliers have been identified. 

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with an LBFGS minimizer. 

Time taken for refinement 1.77

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49800 |  0.8978  |
|      1 |  49800 |  0.89567 |
|      2 |  49800 |  0.8917  |
|      3 |  49800 |  0.89086 |
|      4 |  49800 |  0.89054 |
|      5 |  49800 |  0.88963 |
|      6 |  49800 |  0.88951 |
|      7 |  49800 |  0.88936 |
|      8 |  49800 |  0.88933 |
+--------+--------+----------+
RMSD no longer decreasing
lbfgs minimizer stop: callback_after_step is True

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
739 outliers have been identified. 

Performing a round of error model refinement.

Error model details:
  Type: basic
  Parameters: a = 0.77031, b = 0.02589
  Error model formula: σ'² = a²(σ² + (bI)²)
  estimated I/sigma asymptotic limit: 50.146

Results of error model refinement. Uncorrected and corrected variances
of normalised intensity deviations for given intensity ranges. Variances
are expected to be ~1.0 for reliable errors (sigmas).
+--------------------------+----------+------------------------+----------------------+
| Intensity range (<Ih>)   |   n_refl |   Uncorrected variance |   Corrected variance |
|--------------------------+----------+------------------------+----------------------|
| 9933.27 - 1823.66        |      852 |                  3.361 |                0.684 |
| 1823.66 - 1388.41        |      852 |                  3.324 |                1.025 |
| 1388.41 - 1181.94        |      852 |                  3.35  |                1.284 |
| 1181.94 - 906.67         |     1690 |                  2.626 |                1.177 |
| 906.67 - 498.35          |     5659 |                  2.083 |                1.352 |
| 498.35 - 273.92          |     9481 |                  1.398 |                1.322 |
| 273.92 - 150.56          |    14405 |                  0.978 |                1.205 |
| 150.56 - 82.76           |    19053 |                  0.74  |                1.067 |
| 82.76 - 45.49            |    19980 |                  0.579 |                0.905 |
| 45.49 - 24.99            |    12466 |                  0.464 |                0.751 |
+--------------------------+----------+------------------------+----------------------+

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with a Levenberg-Marquardt minimizer.

Time taken for refinement 3.24

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49812 |  1.0073  |
|      1 |  49812 |  1.0025  |
|      2 |  49812 |  1.0003  |
|      3 |  49812 |  0.99831 |
|      4 |  49812 |  0.9976  |
|      5 |  49812 |  0.99753 |
+--------+--------+----------+
RMSD no longer decreasing

================================================================================

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with a Levenberg-Marquardt minimizer.

Time taken for refinement 1.02

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49812 |  0.99753 |
|      1 |  49812 |  0.99753 |
+--------+--------+----------+
RMSD no longer decreasing

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
240 outliers have been identified. 

Performing a round of error model refinement.

Error model details:
  Type: basic
  Parameters: a = 0.68752, b = 0.03878
  Error model formula: σ'² = a²(σ² + (bI)²)
  estimated I/sigma asymptotic limit: 37.507

Results of error model refinement. Uncorrected and corrected variances
of normalised intensity deviations for given intensity ranges. Variances
are expected to be ~1.0 for reliable errors (sigmas).
+--------------------------+----------+------------------------+----------------------+
| Intensity range (<Ih>)   |   n_refl |   Uncorrected variance |   Corrected variance |
|--------------------------+----------+------------------------+----------------------|
| 9967.32 - 1935.88        |      856 |                 12.009 |                0.923 |
| 1935.88 - 1471.14        |      856 |                  6.827 |                1.066 |
| 1471.14 - 1241.67        |      856 |                  4.85  |                1.066 |
| 1241.67 - 908.51         |     2054 |                  3.868 |                0.97  |
| 908.51 - 499.19          |     5799 |                  2.441 |                1.059 |
| 499.19 - 274.29          |     9546 |                  1.467 |                1.116 |
| 274.29 - 150.71          |    14432 |                  0.955 |                1.118 |
| 150.71 - 82.81           |    19012 |                  0.706 |                1.092 |
| 82.81 - 45.50            |    19843 |                  0.55  |                0.995 |
| 45.50 - 24.99            |    12418 |                  0.453 |                0.88  |
+--------------------------+----------+------------------------+----------------------+


The reflection table variances have been adjusted to account for the
uncertainty in the scaling model

Total time taken: 19.3229s 

================================================================================

37.14% of model parameters have signficant uncertainty
(sigma/abs(parameter) > 0.5)

Summary of dataset partialities
+------------------+----------+
| Partiality (p)   |   n_refl |
|------------------+----------|
| all reflections  |   368663 |
| p > 0.99         |   366172 |
| 0.5 < p < 0.99   |      458 |
| 0.01 < p < 0.5   |      436 |
| p < 0.01         |     1597 |
+------------------+----------+

Reflections below a partiality_cutoff of 0.4 are not considered for any
part of the scaling analysis or for the reporting of merging statistics.
Additionally, if applicable, only reflections with a min_partiality > 0.95
were considered for use when refining the scaling model.


            ----------Merging statistics by resolution bin----------           

 d_max  d_min   #obs  #uniq   mult.  %comp       <I>  <I/sI>    r_mrg   r_meas    r_pim   r_anom   cc1/2   cc_ano
 69.30   3.30  22351   3378    6.62  98.63     547.0    69.5    0.036    0.040    0.015    0.043   0.999*   0.297*
  3.30   2.62  22008   3309    6.65  97.58     201.7    48.0    0.049    0.053    0.020    0.060   0.998*   0.377*
  2.62   2.29  22355   3252    6.87  96.76     103.7    35.8    0.064    0.070    0.026    0.073   0.997*   0.371*
  2.29   2.08  21865   3223    6.78  96.01      71.0    27.2    0.078    0.084    0.032    0.082   0.996*   0.285*
  2.08   1.93  21260   3166    6.72  95.22      47.1    20.4    0.097    0.105    0.040    0.100   0.994*   0.204*
  1.93   1.81  21396   3181    6.73  94.56      26.7    13.9    0.134    0.145    0.055    0.131   0.991*   0.152*
  1.81   1.72  20945   3132    6.69  93.80      16.6     9.7    0.178    0.193    0.074    0.174   0.985*   0.138*
  1.72   1.65  20580   3103    6.63  93.16      11.0     6.9    0.231    0.251    0.097    0.217   0.977*   0.091*
  1.65   1.58  21360   3107    6.87  92.72       8.9     5.7    0.277    0.299    0.114    0.246   0.973*   0.070*
  1.58   1.53  20423   3090    6.61  91.99       6.6     4.4    0.336    0.365    0.141    0.315   0.954*   0.101*
  1.53   1.48  19722   3051    6.46  91.76       5.2     3.4    0.410    0.447    0.174    0.372   0.942*   0.047*
  1.48   1.44  20377   3009    6.77  90.66       3.6     2.5    0.558    0.604    0.230    0.472   0.920*   0.048*
  1.44   1.40  18257   3002    6.08  90.53       3.1     2.1    0.634    0.692    0.276    0.569   0.885*   0.020
  1.40   1.37  13680   2477    5.52  73.55       2.6     1.6    0.770    0.853    0.358    0.713   0.782*  -0.010
  1.37   1.34   9526   1767    5.39  53.53       2.3     1.4    0.865    0.958    0.403    0.773   0.738*   0.003
  1.34   1.31   6634   1292    5.13  38.94       2.1     1.2    0.929    1.032    0.439    0.877   0.742*   0.058
  1.31   1.28   4874   1030    4.73  30.42       1.6     0.9    1.249    1.401    0.617    1.101   0.590*   0.064
  1.28   1.26   2813    682    4.12  20.75       1.4     0.7    1.485    1.694    0.791    1.326   0.395*   0.059
  1.26   1.24   1235    417    2.96  12.68       1.2     0.5    1.951    2.343    1.263    1.544   0.332*  -0.046
  1.24   1.21    316    191    1.65   5.69       1.0     0.3    1.588    2.088    1.338    1.445   0.396*  -0.458
 69.19   1.21 311977  48859    6.39  73.04      71.7    16.9    0.065    0.071    0.027    0.072   0.999*   0.325*



            -------------Summary of merging statistics--------------           

                                             Overall    Low     High
High resolution limit                           1.21    3.30    1.21
Low resolution limit                           69.19   69.30    1.24
Completeness                                   73.0    98.6     5.7
Multiplicity                                    6.4     6.6     1.7
I/sigma                                        16.9    69.5     0.3
Rmerge(I)                                     0.065   0.036   1.588
Rmerge(I+/-)                                  0.055   0.030   1.393
Rmeas(I)                                      0.071   0.040   2.088
Rmeas(I+/-)                                   0.066   0.035   1.970
Rpim(I)                                       0.027   0.015   1.338
Rpim(I+/-)                                    0.035   0.019   1.393
CC half                                       0.999   0.999   0.396
Anomalous completeness                         71.7    98.8     1.5
Anomalous multiplicity                          3.3     3.4     1.3
Anomalous correlation                         0.325   0.297  -0.458
Anomalous slope                               1.091
dF/F                                          0.064
dI/s(dI)                                      1.226
Total observations                           311977   22351     316
Total unique                                  48859    3378     191

Writing html report to dials.scale.html
Saving the scaled experiments to scaled.expt
Saving the scaled reflections to scaled.refl
See dials.github.io/dials_scale_user_guide.html for more info on scaling options

As can be seen from the output text, 70 parameters are used to parameterise the scaling model for this dataset. Outlier rejection is performed at several stages, as outliers have a disproportionately large effect during scaling and can lead to poor scaling results. During scaling, the distribution of the intensity uncertainties are also analysed and a correction is applied based on a prior expectation of the intensity error distribution. At the end of the output, a table and summary of the merging statistics are presented, which give indications of the quality of the scaled dataset:

            ----------Merging statistics by resolution bin----------           

 d_max  d_min   #obs  #uniq   mult.  %comp       <I>  <I/sI>    r_mrg   r_meas    r_pim   r_anom   cc1/2   cc_ano
 69.30   3.30  22351   3378    6.62  98.63     547.0    69.5    0.036    0.040    0.015    0.043   0.999*   0.297*
  3.30   2.62  22008   3309    6.65  97.58     201.7    48.0    0.049    0.053    0.020    0.060   0.998*   0.377*
  2.62   2.29  22355   3252    6.87  96.76     103.7    35.8    0.064    0.070    0.026    0.073   0.997*   0.371*
  2.29   2.08  21865   3223    6.78  96.01      71.0    27.2    0.078    0.084    0.032    0.082   0.996*   0.285*
  2.08   1.93  21260   3166    6.72  95.22      47.1    20.4    0.097    0.105    0.040    0.100   0.994*   0.204*
  1.93   1.81  21396   3181    6.73  94.56      26.7    13.9    0.134    0.145    0.055    0.131   0.991*   0.152*
  1.81   1.72  20945   3132    6.69  93.80      16.6     9.7    0.178    0.193    0.074    0.174   0.985*   0.138*
  1.72   1.65  20580   3103    6.63  93.16      11.0     6.9    0.231    0.251    0.097    0.217   0.977*   0.091*
  1.65   1.58  21360   3107    6.87  92.72       8.9     5.7    0.277    0.299    0.114    0.246   0.973*   0.070*
  1.58   1.53  20423   3090    6.61  91.99       6.6     4.4    0.336    0.365    0.141    0.315   0.954*   0.101*
  1.53   1.48  19722   3051    6.46  91.76       5.2     3.4    0.410    0.447    0.174    0.372   0.942*   0.047*
  1.48   1.44  20377   3009    6.77  90.66       3.6     2.5    0.558    0.604    0.230    0.472   0.920*   0.048*
  1.44   1.40  18257   3002    6.08  90.53       3.1     2.1    0.634    0.692    0.276    0.569   0.885*   0.020
  1.40   1.37  13680   2477    5.52  73.55       2.6     1.6    0.770    0.853    0.358    0.713   0.782*  -0.010
  1.37   1.34   9526   1767    5.39  53.53       2.3     1.4    0.865    0.958    0.403    0.773   0.738*   0.003
  1.34   1.31   6634   1292    5.13  38.94       2.1     1.2    0.929    1.032    0.439    0.877   0.742*   0.058
  1.31   1.28   4874   1030    4.73  30.42       1.6     0.9    1.249    1.401    0.617    1.101   0.590*   0.064
  1.28   1.26   2813    682    4.12  20.75       1.4     0.7    1.485    1.694    0.791    1.326   0.395*   0.059
  1.26   1.24   1235    417    2.96  12.68       1.2     0.5    1.951    2.343    1.263    1.544   0.332*  -0.046
  1.24   1.21    316    191    1.65   5.69       1.0     0.3    1.588    2.088    1.338    1.445   0.396*  -0.458
 69.19   1.21 311977  48859    6.39  73.04      71.7    16.9    0.065    0.071    0.027    0.072   0.999*   0.325*



            -------------Summary of merging statistics--------------           

                                             Overall    Low     High
High resolution limit                           1.21    3.30    1.21
Low resolution limit                           69.19   69.30    1.24
Completeness                                   73.0    98.6     5.7
Multiplicity                                    6.4     6.6     1.7
I/sigma                                        16.9    69.5     0.3
Rmerge(I)                                     0.065   0.036   1.588
Rmerge(I+/-)                                  0.055   0.030   1.393
Rmeas(I)                                      0.071   0.040   2.088
Rmeas(I+/-)                                   0.066   0.035   1.970
Rpim(I)                                       0.027   0.015   1.338
Rpim(I+/-)                                    0.035   0.019   1.393
CC half                                       0.999   0.999   0.396
Anomalous completeness                         71.7    98.8     1.5
Anomalous multiplicity                          3.3     3.4     1.3
Anomalous correlation                         0.325   0.297  -0.458
Anomalous slope                               1.091
dF/F                                          0.064
dI/s(dI)                                      1.226
Total observations                           311977   22351     316
Total unique                                  48859    3378     191

Looking at the resolution-dependent merging statistics, we can see that the completeness falls significantly beyond 1.4 Angstrom resolution. If desired, a resolution cutoff can be applied and the data rescaled (using the output of the previous scaling run as input to the next run to load the existing state of the scaling model):

dials.scale scaled.expt scaled.refl d_min=1.4

The merging statistics, as well as a number of scaling and merging plots, are output into a html report called dials.scale.html. This can be opened in your browser - nativigate to the section “scaling model plots” and take a look. What is immediately apparent is the periodic nature of the scale term, with peaks and troughs 90° apart. This indicates that the illuminated volume was changing significantly during the experiment: a reflection would be measured as almost twice as intense if it was measured at rotation angle of ~120° compared to at ~210°. The absorption surface also shows a similar periodicity, as may be expected. The relative B-factor shows low overall variation, suggesting little overall radiation damage.

Once we are happy with the dataset quality, the final step of dials processing is to merge the data and produce a merged mtz file, suitable for input to downstream structure solution. To do this we can use the command:

dials.merge scaled.expt scaled.refl

The log output reports intensity statistics, the symmetry equivalent reflections are merged and a truncation procedure is performed, to give strictly positive merged structure factors (Fs) in addition to merged intensities.

HTML report

Much more information from the various steps of data processing can be found within an HTML report generated using the program dials.report. This is run simply with:

dials.report scaled.expt scaled.refl

which produces the file dials.report.html.

This report includes plots showing the scan-varying crystal orientation and unit cell parameters. The latter of these is useful to check that changes to the cell during processing appear reasonable. We can at least see from this and the low final refined RMSDs that this is a very well- behaved dataset.

Some of the most useful plots are

  • Difference between observed and calculated centroids vs phi, which shows how the average residuals in each of X, Y, and φ vary as a fuction of φ. If scan-varying refinement has been successful in capturing the real changes during the scan then we would expect these plots to be straight lines.

  • Centroid residuals in X and Y, in which the X, Y residuals are shown directly. The key point here is to look for a globular shape centred at the origin.

  • Difference between observed and calculated centroids in X and Y, which show the difference between predicted and observed reflection positions in either X or Y as functions of detector position. From these plots it is very easy to see whole tiles that are worse than their neighbours, and whether those tiles might be simply shifted or slightly rotated compared to the model detector.

  • Reflection and reference correlations binned in X/Y. These are useful companions to the plots of centroid residual as a function of detector position above. Whereas the above plots show systematic errors in the positions and orientations of tiles of a multi-panel detector, these plots indicate what effect that (and any other position-specific systematic error) has on the integrated data quality. The first of these plots shows the correlation between reflections and their reference profiles for all reflections in the dataset. The second shows only the correlations between the strong reference reflections and their profiles (thus these are expected to be higher and do not extend to such high resolution).

  • Distribution of I/Sigma vs Z. This reproduces the \(\frac{I}{\sigma_I}\) information versus frame number given in the log file in a graphical form. Here we see that \(\frac{I}{\sigma_I}\) is fairly flat over the whole dataset, which we might use as an indication that there were no bad frames, not much radiation damage occurred and that scale factors are likely to be fairly uniform.

Exporting to unmerged MTZ

It is possible that an unmerged mtz file is desired for further processing before merging. To produce a scaled unmerged mtz file, one can use the dials.export command on the scaled datafiles:

dials.export scaled.refl scaled.expt

It is also possible to export the integrated (unscaled) data in mtz format using dials.export. If you have an installation of CCP4, symmetry analysis and scaling can then be continued with the ccp4 programs pointless, aimless and ctruncate to generate a merged mtz file:

dials.export integrated.refl integrated.expt
pointless hklin integrated.mtz hklout sorted.mtz > pointless.log
aimless hklin sorted.mtz hklout scaled.mtz > aimless.log << EOF
resolution 1.4
anomalous off
EOF
ctruncate -hklin scaled.mtz -hklout truncated.mtz \
-colin '/*/*/[IMEAN,SIGIMEAN]' > ctruncate.log