dials.algorithms.scaling¶
This module provides datastructures and algorithms for scaling.
model.model¶
Definitions of scaling models.
A scaling model is a collection of scaling model components with appropriate methods to define how these are composed into one model.
- class dials.algorithms.scaling.model.model.ArrayScalingModel(parameters_dict, configdict, is_scaled=False)[source]¶
Bases:
dials.algorithms.scaling.model.model.ScalingModelBase
A scaling model for an array-based parameterisation.
- __init__(parameters_dict, configdict, is_scaled=False)[source]¶
Create the array scaling model components.
- configure_components(reflection_table, experiment, params)[source]¶
Add the required reflection table data to the model components.
- property consecutive_refinement_order¶
a nested list of component names to indicate scaling order.
- Type
list
- classmethod from_data(params, experiment, reflection_table)[source]¶
create an array-based scaling model.
- classmethod from_dict(obj)[source]¶
Create an
ArrayScalingModel
from a dictionary.
- id_ = 'array'¶
- limit_image_range(new_image_range)[source]¶
Modify the model to be suitable for a reduced image range.
For this model, this involves determining whether the number of parameters should be reduced and may reduce the number of parameters in the absorption and decay components.
- Parameters
new_image_range (tuple) – The (start, end) of the new image range.
- phil_scope = <libtbx.phil.scope object>¶
- class dials.algorithms.scaling.model.model.DoseDecay(parameters_dict, configdict, is_scaled=False)[source]¶
Bases:
dials.algorithms.scaling.model.model.ScalingModelBase
A model similar to the physical model, where an exponential decay component is used plus a relative B-factor per sweep, with no absorption surface by default. Most suitable for multi-crystal datasets.
- __init__(parameters_dict, configdict, is_scaled=False)[source]¶
Create the physical scaling model components.
- configure_components(reflection_table, experiment, params)[source]¶
Add the required reflection table data to the model components.
- property consecutive_refinement_order¶
a nested list of component names to indicate scaling order.
- Type
list
- classmethod from_data(params, experiment, reflection_table)[source]¶
Create the scaling model defined by the params.
- classmethod from_dict(obj)[source]¶
Create a
PhysicalScalingModel
from a dictionary.
- id_ = 'dose_decay'¶
- limit_image_range(new_image_range)[source]¶
Modify the model to be suitable for a reduced image range.
For this model, this involves determining whether the number of parameters should be reduced and may reduce the number of parameters in the scale and decay components.
- Parameters
new_image_range (tuple) – The (start, end) of the new image range.
- phil_scope = <libtbx.phil.scope object>¶
- class dials.algorithms.scaling.model.model.KBScalingModel(parameters_dict, configdict, is_scaled=False)[source]¶
Bases:
dials.algorithms.scaling.model.model.ScalingModelBase
A scaling model for a KB parameterisation.
- __init__(parameters_dict, configdict, is_scaled=False)[source]¶
Create the KB scaling model components.
- configure_components(reflection_table, experiment, params)[source]¶
Add the required reflection table data to the model components.
- property consecutive_refinement_order¶
a nested list of component names to indicate scaling order.
- Type
list
- classmethod from_data(params, experiment, reflection_table)[source]¶
Create the
KBScalingModel
from data.
- classmethod from_dict(obj)[source]¶
Create an
KBScalingModel
from a dictionary.
- id_ = 'KB'¶
- phil_scope = <libtbx.phil.scope object>¶
- class dials.algorithms.scaling.model.model.PhysicalScalingModel(parameters_dict, configdict, is_scaled=False)[source]¶
Bases:
dials.algorithms.scaling.model.model.ScalingModelBase
A scaling model for a physical parameterisation.
- __init__(parameters_dict, configdict, is_scaled=False)[source]¶
Create the physical scaling model components.
- configure_components(reflection_table, experiment, params)[source]¶
Add the required reflection table data to the model components.
- property consecutive_refinement_order¶
a nested list of component names to indicate scaling order.
- Type
list
- classmethod from_data(params, experiment, reflection_table)[source]¶
Create the scaling model defined by the params.
- classmethod from_dict(obj)[source]¶
Create a
PhysicalScalingModel
from a dictionary.
- id_ = 'physical'¶
- limit_image_range(new_image_range)[source]¶
Modify the model to be suitable for a reduced image range.
For this model, this involves determining whether the number of parameters should be reduced and may reduce the number of parameters in the scale and decay components.
- Parameters
new_image_range (tuple) – The (start, end) of the new image range.
- phil_scope = <libtbx.phil.scope object>¶
- class dials.algorithms.scaling.model.model.ScalingModelBase(configdict, is_scaled=False)[source]¶
Bases:
object
Abstract base class for scaling models.
- __init__(configdict, is_scaled=False)[source]¶
Initialise the model with no components and a
configdict
.
- configure_components(reflection_table, experiment, params)[source]¶
Add the required reflection table data to the model components.
- consecutive_refinement_order()[source]¶
list
: a nested list of component names.This list indicates to the scaler the order to perform scaling in consecutive scaling mode. e.g. [[‘scale’, ‘decay’], [‘absorption’]] would cause the first cycle to refine scale and decay, and then absorption in a subsequent cycle.
- property error_model¶
The error model associated with the scaling model.
- Type
- property fixed_components¶
- classmethod from_data(params, experiment, reflection_table)[source]¶
Create the model from input data.
- id_ = None¶
- limit_image_range(new_image_range)[source]¶
Modify the model if necessary due to reducing the image range.
- Parameters
new_image_range (tuple) – The (start, end) of the new image range.
- plot_model_components(reflection_table=None)[source]¶
Return a dict of plots for plotting model components with plotly.
- set_valid_image_range(image_range)[source]¶
Set the valid image range for the model in the
configdict
.
- dials.algorithms.scaling.model.model.calc_n_param_from_bins(value_min, value_max, n_bins)[source]¶
Return the correct number of bins for initialising the gaussian smoothers.
- dials.algorithms.scaling.model.model.calculate_new_offset(current_image_0, new_image_0, new_norm_fac, n_old_param, n_new_param)[source]¶
Calculate the parameter offset for the new image range.
- Returns
- An offset to apply when selecting the new parameters from the
existing parameters.
- Return type
- dials.algorithms.scaling.model.model.initialise_smooth_input(osc_range, one_osc_width, interval)[source]¶
Calculate the required smoother parameters.
Using information about the sequence and the chosen parameterisation interval, the required parameters for the smoother are determined.
- Parameters
- Returns
- Return type
tuple
outlier_rejection¶
Definitions of outlier rejection algorithms.
These algorithms use the Ih_table datastructures to perform calculations in groups of symmetry equivalent reflections. Two functions are provided, reject_outliers, to reject outlier and set flags given a reflection table and experiment object, and determine_outlier_index_arrays, which takes an Ih_table and returns flex.size_t index arrays of the outlier positions.
- class dials.algorithms.scaling.outlier_rejection.NormDevOutlierRejection(Ih_table, zmax)[source]¶
Bases:
dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase
Algorithm using normalised deviations from the weighted intensity means.
In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection.
- class dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase(Ih_table, zmax)[source]¶
Bases:
object
Base class for outlier rejection algorithms using an IhTable datastructure.
Subclasses must implement the _do_outlier_rejection method, which must add the indices of outliers to the _outlier_indices attribute. The algorithms are run upon initialisation and result in the population of the
final_outlier_arrays
.- final_outlier_arrays¶
A list of flex.size_t arrays of outlier indices w.r.t. the order of the initial reflection tables used to create the Ih_table.
- Type
list
- class dials.algorithms.scaling.outlier_rejection.SimpleNormDevOutlierRejection(Ih_table, zmax)[source]¶
Bases:
dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase
Algorithm using normalised deviations from the weighted intensity means.
In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection.
- class dials.algorithms.scaling.outlier_rejection.TargetedOutlierRejection(Ih_table, zmax, target)[source]¶
Bases:
dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase
Implementation of an outlier rejection algorithm against a target.
This algorithm requires a target Ih_table in addition to an Ih_table for the dataset under investigation. Normalised deviations are calculated from the intensity values in the target table.
- dials.algorithms.scaling.outlier_rejection.determine_Esq_outlier_index_arrays(Ih_table, experiment, emax=10.0)[source]¶
- dials.algorithms.scaling.outlier_rejection.determine_outlier_index_arrays(Ih_table, method='standard', zmax=6.0, target=None)[source]¶
Run an outlier algorithm and return the outlier indices.
- Parameters
Ih_table – A dials.algorithms.scaling.Ih_table.IhTable.
method (str) – Name (alias) of outlier rejection algorithm to use. If method=target, then the optional argument target must also be specified. Implemented methods; standard, simple, target.
zmax (float) – Normalised deviation threshold for classifying an outlier.
target (Optional[IhTable]) – An IhTable to use to obtain target Ih for outlier rejectiob, if method=target.
- Returns
- A list of flex.size_t arrays, with one
array per dataset that was used to create the Ih_table. Importantly, the indices are the indices of the reflections in the initial reflection table used to create the Ih_table, not the indices of the data in the Ih_table.
- Return type
outlier_index_arrays (list)
- Raises
ValueError – if an invalid choice is made for the method.
- dials.algorithms.scaling.outlier_rejection.reject_outliers(reflection_table, experiment, method='standard', zmax=6.0)[source]¶
Run an outlier algorithm on symmetry-equivalent intensities.
This method runs an intensity-based outlier rejection algorithm, comparing the deviations from the weighted mean in groups of symmetry equivalent reflections. The outliers are determined and the outlier_in_scaling flag is set in the reflection table.
The values intensity and variance must be set in the reflection table; these should be corrected but unscaled values, as an inverse_scale_factor will be applied during outlier rejection if this is present in the reflection table. The reflection table should also be prefiltered (e.g. not-integrated reflections should not be present) as no further filtering is done on the input table.
- Parameters
- Returns
The input table with the outlier_in_scaling flag set.
- Return type
reflection_table