Source code for dials.algorithms.symmetry.cosym

"""Methods for symmetry determination from partial datasets.

This module implements the methods of `Gildea, R. J. & Winter, G. (2018).
Acta Cryst. D74, 405-410 <https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""

import json
import logging
import math
from typing import List

import numpy as np
from sklearn.neighbors import NearestNeighbors

import iotbx.phil
from cctbx import sgtbx
from libtbx import Auto
from scitbx import matrix

import dials.util
from dials.algorithms.indexing.symmetry import find_matching_symmetry
from dials.algorithms.symmetry import symmetry_base
from dials.algorithms.symmetry.cosym import engine as cosym_engine
from dials.algorithms.symmetry.cosym import target
from dials.algorithms.symmetry.laue_group import ScoreCorrelationCoefficient
from dials.util.observer import Subject

logger = logging.getLogger(__name__)

phil_scope = iotbx.phil.parse(
    """\

normalisation = kernel quasi *ml_iso ml_aniso
  .type = choice

d_min = Auto
  .type = float(value_min=0)

min_i_mean_over_sigma_mean = 4
  .type = float(value_min=0)

min_cc_half = 0.6
  .type = float(value_min=0, value_max=1)

lattice_group = None
  .type = space_group

space_group = None
  .type = space_group

lattice_symmetry_max_delta = 5.0
  .type = float(value_min=0)

best_monoclinic_beta = True
  .type = bool
  .help = "If True, then for monoclinic centered cells, I2 will be preferred over C2 if"
          "it gives a less oblique cell (i.e. smaller beta angle)."

dimensions = Auto
  .type = int(value_min=2)

use_curvatures = True
  .type = bool

weights = count standard_error
  .type = choice

min_pairs = 3
  .type = int(value_min=1)
  .help = 'Minimum number of pairs for inclusion of correlation coefficient in calculation of Rij matrix.'

minimization {
  engine = *scitbx scipy
    .type = choice
  max_iterations = 100
    .type = int(value_min=0)
  max_calls = None
    .type = int(value_min=0)
}

nproc = None
  .type = int(value_min=1)
  .help = "Deprecated"
  .deprecated = True
"""
)


[docs]class CosymAnalysis(symmetry_base, Subject): """Perform cosym analysis. Perform cosym analysis on the input intensities using the methods of `Gildea, R. J. & Winter, G. (2018). Acta Cryst. D74, 405-410 <https://doi.org/10.1107/S2059798318002978>`_ for determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity. """
[docs] def __init__(self, intensities, params): """Initialise a CosymAnalysis object. Args: intensities (cctbx.miller.array): The intensities on which to perform cosym analysis. params (libtbx.phil.scope_extract): Parameters for the analysis. """ super().__init__( intensities, normalisation=params.normalisation, lattice_symmetry_max_delta=params.lattice_symmetry_max_delta, d_min=params.d_min, min_i_mean_over_sigma_mean=params.min_i_mean_over_sigma_mean, min_cc_half=params.min_cc_half, relative_length_tolerance=None, absolute_angle_tolerance=None, best_monoclinic_beta=params.best_monoclinic_beta, ) Subject.__init__( self, events=["optimised", "analysed_symmetry", "analysed_clusters"] ) self.params = params if self.params.space_group is not None: def _map_space_group_to_input_cell(intensities, space_group): from cctbx.sgtbx.bravais_types import bravais_lattice best_subgroup = find_matching_symmetry( intensities.unit_cell(), space_group, best_monoclinic_beta=str(bravais_lattice(group=space_group)) == "mI", ) cb_op_inp_best = best_subgroup["cb_op_inp_best"] best_subsym = best_subgroup["best_subsym"] cb_op_best_primitive = ( best_subsym.change_of_basis_op_to_primitive_setting() ) sg_cb_op_inp_primitive = ( space_group.info().change_of_basis_op_to_primitive_setting() ) sg_primitive = space_group.change_basis(sg_cb_op_inp_primitive) sg_best = sg_primitive.change_basis(cb_op_best_primitive.inverse()) # best_subgroup above is the bravais type, so create thin copy here with the # user-input space group instead best_subsym = best_subsym.customized_copy( space_group_info=sg_best.info() ) best_subgroup = { "subsym": best_subsym.change_basis(cb_op_inp_best.inverse()), "best_subsym": best_subsym, "cb_op_inp_best": cb_op_inp_best, } intensities = intensities.customized_copy( space_group_info=sg_best.change_basis( cb_op_inp_best.inverse() ).info() ) return intensities, best_subgroup self.intensities, self.best_subgroup = _map_space_group_to_input_cell( self.intensities, self.params.space_group.group() ) self.best_subgroup["cb_op_inp_best"] = ( self.best_subgroup["cb_op_inp_best"] * self.cb_op_inp_min ) self.input_space_group = self.intensities.space_group() else: self.input_space_group = None if self.params.lattice_group is not None: tmp_intensities, _ = _map_space_group_to_input_cell( self.intensities, self.params.lattice_group.group() ) self.params.lattice_group = tmp_intensities.space_group_info()
def _intialise_target(self): if self.params.dimensions is Auto: dimensions = None else: dimensions = self.params.dimensions if self.params.lattice_group is not None: self.lattice_group = ( self.params.lattice_group.group() .build_derived_patterson_group() .info() .primitive_setting() .group() ) self.target = target.Target( self.intensities, self.dataset_ids.as_numpy_array(), min_pairs=self.params.min_pairs, lattice_group=self.lattice_group, dimensions=dimensions, weights=self.params.weights, ) def _determine_dimensions(self): if self.params.dimensions is Auto and self.target.dim == 2: self.params.dimensions = 2 elif self.params.dimensions is Auto: logger.info("=" * 80) logger.info( "\nAutomatic determination of number of dimensions for analysis" ) dimensions = [] functional = [] for dim in range(1, self.target.dim + 1): logger.debug("Testing dimension: %i", dim) self.target.set_dimensions(dim) max_calls = self.params.minimization.max_calls self._optimise( self.params.minimization.engine, max_iterations=self.params.minimization.max_iterations, max_calls=min(20, max_calls) if max_calls else max_calls, ) dimensions.append(dim) functional.append(self.minimizer.fun) # Find the elbow point of the curve, in the same manner as that used by # distl spotfinder for resolution method 1 (Zhang et al 2006). # See also dials/algorithms/spot_finding/per_image_analysis.py x = np.array(dimensions) y = np.array(functional) slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1]) p_m = slopes.argmin() x1 = matrix.col((x[p_m], y[p_m])) x2 = matrix.col((x[-1], y[-1])) gaps = [] v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize() for i in range(p_m, len(x)): x0 = matrix.col((x[i], y[i])) r = x1 - x0 g = abs(v.dot(r)) gaps.append(g) p_g = np.array(gaps).argmax() x_g = x[p_g + p_m] logger.info( dials.util.tabulate( zip(dimensions, functional), headers=("Dimensions", "Functional") ) ) logger.info("Best number of dimensions: %i", x_g) self.target.set_dimensions(int(x_g)) logger.info("Using %i dimensions for analysis", self.target.dim)
[docs] def run(self): self._intialise_target() self._determine_dimensions() self._optimise( self.params.minimization.engine, max_iterations=self.params.minimization.max_iterations, max_calls=self.params.minimization.max_calls, ) self._principal_component_analysis() self._analyse_symmetry()
@Subject.notify_event(event="optimised") def _optimise(self, engine, max_iterations=None, max_calls=None): NN = len(self.input_intensities) n_sym_ops = len(self.target.sym_ops) coords = np.random.rand(NN * n_sym_ops * self.target.dim) if engine == "scitbx": self.minimizer = cosym_engine.minimize_scitbx_lbfgs( self.target, coords, use_curvatures=self.params.use_curvatures, max_iterations=max_iterations, max_calls=max_calls, ) else: self.minimizer = cosym_engine.minimize_scipy( self.target, coords, method="L-BFGS-B", max_iterations=max_iterations, max_calls=max_calls, ) self.coords = self.minimizer.x.reshape( self.target.dim, NN * n_sym_ops ).transpose() def _principal_component_analysis(self): # Perform PCA from sklearn.decomposition import PCA pca = PCA().fit(self.coords) logger.info("Principal component analysis:") logger.info( "Explained variance: " + ", ".join(["%.2g" % v for v in pca.explained_variance_]) ) logger.info( "Explained variance ratio: " + ", ".join(["%.2g" % v for v in pca.explained_variance_ratio_]) ) self.explained_variance = pca.explained_variance_ self.explained_variance_ratio = pca.explained_variance_ratio_ if self.target.dim > 3: pca.n_components = 3 self.coords_reduced = pca.fit_transform(self.coords) @Subject.notify_event(event="analysed_symmetry") def _analyse_symmetry(self): sym_ops = [sgtbx.rt_mx(s).new_denominators(1, 12) for s in self.target.sym_ops] if not self.input_space_group: self._symmetry_analysis = SymmetryAnalysis( self.coords, sym_ops, self.subgroups, self.cb_op_inp_min ) logger.info(str(self._symmetry_analysis)) self.best_solution = self._symmetry_analysis.best_solution self.best_subgroup = self.best_solution.subgroup else: self.best_solution = None self._symmetry_analysis = None cosets = sgtbx.cosets.left_decomposition( self.target._lattice_group, self.best_subgroup["subsym"].space_group().build_derived_acentric_group(), ) self.reindexing_ops = self._reindexing_ops(self.coords, sym_ops, cosets) def _reindexing_ops( self, coords: np.ndarray, sym_ops: List[sgtbx.rt_mx], cosets: sgtbx.cosets.left_decomposition, ) -> List[sgtbx.change_of_basis_op]: """Identify the reindexing operator for each dataset. Args: coords (np.ndarray): A flattened list of the N-dimensional vectors, i.e. coordinates in the first dimension are stored first, followed by the coordinates in the second dimension, etc. sym_ops (List[sgtbx.rt_mx]): List of cctbx.sgtbx.rt_mx used for the cosym symmetry analysis cosets (sgtbx.cosets.left_decomposition): The left coset decomposition of the lattice group with respect to the proposed Patterson group Returns: List[sgtbx.change_of_basis_op]: A list of reindexing operators corresponding to each dataset. """ reindexing_ops = [] n_datasets = len(self.input_intensities) n_sym_ops = len(sym_ops) coord_ids = np.arange(n_datasets * n_sym_ops) dataset_ids = coord_ids % n_datasets # choose a high density point as seed X = coords nbrs = NearestNeighbors( n_neighbors=min(11, len(X)), algorithm="brute", metric="cosine" ).fit(X) distances, indices = nbrs.kneighbors(X) average_distance = np.array([dist[1:].mean() for dist in distances]) i = average_distance.argmin() xis = np.array([X[i]]) for j in range(n_datasets): sel = np.where(dataset_ids == j) X = coords[sel] # Find nearest neighbour in cosine-space to the current cluster centroid nbrs = NearestNeighbors( n_neighbors=min(1, len(X)), algorithm="brute", metric="cosine" ).fit(X) distances, indices = nbrs.kneighbors([xis.mean(axis=0)]) k = indices[0][0] xis = np.append(xis, [X[k]], axis=0) for partition in cosets.partitions: if sym_ops[k] in partition: cb_op = sgtbx.change_of_basis_op(partition[0]).new_denominators( self.cb_op_inp_min ) reindexing_ops.append( ( self.cb_op_inp_min.inverse() * cb_op * self.cb_op_inp_min ).as_xyz() ) break return reindexing_ops
[docs] def as_dict(self): """Return a dictionary representation of the results. Returns: dict """ d = { "input_symmetry": { "hall_symbol": self.input_intensities[0] .space_group() .type() .hall_symbol(), "unit_cell": self.median_unit_cell.parameters(), }, "cb_op_inp_min": self.cb_op_inp_min.as_xyz(), "min_cell_symmetry": { "hall_symbol": self.intensities.space_group().type().hall_symbol(), "unit_cell": self.intensities.unit_cell().parameters(), }, "lattice_point_group": self.lattice_group.type().hall_symbol(), } if self._symmetry_analysis is not None: d.update(self._symmetry_analysis.as_dict()) return d
[docs] def as_json(self, filename=None, indent=2): """Return a json representation of the results. Args: filename (str): Optional filename to export the json representation of the results. indent (int): The indent level for pretty-printing of the json. If ``None`` is the most compact representation. Returns: str: """ d = self.as_dict() json_str = json.dumps(d, indent=indent) if filename: with open(filename, "w") as f: f.write(json_str) return json.dumps(d, indent=indent)
[docs]class SymmetryAnalysis:
[docs] def __init__(self, coords, sym_ops, subgroups, cb_op_inp_min): import scipy.spatial.distance as ssd self.subgroups = subgroups self.cb_op_inp_min = cb_op_inp_min n_datasets = coords.shape[0] // len(sym_ops) dist_mat = ssd.pdist(coords, metric="cosine") cos_angle = 1 - ssd.squareform(dist_mat) self._sym_ops_cos_angle = {} for dataset_id in range(n_datasets): for ref_sym_op_id in range(len(sym_ops)): ref_idx = n_datasets * ref_sym_op_id + dataset_id for sym_op_id in range(ref_sym_op_id + 1, len(sym_ops)): op = sym_ops[ref_sym_op_id].inverse().multiply(sym_ops[sym_op_id]) op = op.new_denominators(1, 12) comp_idx = n_datasets * sym_op_id + dataset_id self._sym_ops_cos_angle.setdefault(op, []) self._sym_ops_cos_angle[op].append(cos_angle[ref_idx, comp_idx]) self._score_symmetry_elements() self._score_laue_groups()
def _score_symmetry_elements(self): self.sym_op_scores = {} for op, cos_angle in self._sym_ops_cos_angle.items(): cc_true = 1 cc = np.mean(cos_angle) score = ScoreSymmetryElement(cc, sigma_cc=0.1, cc_true=cc_true) score.sym_op = op self.sym_op_scores[op] = score def _score_laue_groups(self): subgroup_scores = [ ScoreSubGroup(subgrp, list(self.sym_op_scores.values())) for subgrp in self.subgroups.result_groups ] total_likelihood = sum(score.likelihood for score in subgroup_scores) for score in subgroup_scores: score.likelihood /= total_likelihood self.subgroup_scores = sorted( subgroup_scores, key=lambda score: score.likelihood, reverse=True ) # The 'confidence' scores are derived from the total probability of the best # solution p_best and that for the next best solution p_next: # confidence = [p_best * (p_best - p_next)]^1/2. for i, score in enumerate(self.subgroup_scores[:-1]): next_score = self.subgroup_scores[i + 1] if score.likelihood > 0 and next_score.likelihood > 0: lgc = score.likelihood * (score.likelihood - next_score.likelihood) confidence = abs(lgc) ** 0.5 if lgc < 0: confidence = -confidence score.confidence = confidence self.best_solution = self.subgroup_scores[0]
[docs] @staticmethod def sym_ops_table(d): header = ("likelihood", "Z-CC", "CC", "", "Operator") rows = [header] for score in d["sym_op_scores"]: rows.append( ( f"{score['likelihood']:.3f}", f"{score['z_cc']:.2f}", f"{score['cc']:.2f}", score["stars"], str(sgtbx.rt_mx(str(score["operator"])).r().info()), ) ) return rows
[docs] @staticmethod def subgroups_table(d): header = ( "Patterson group", "", "Likelihood", "NetZcc", "Zcc+", "Zcc-", "delta", "Reindex operator", ) rows = [header] for score in d["subgroup_scores"]: rows.append( ( str( sgtbx.space_group( hall_symbol=str(score["patterson_group"]) ).info() ), score["stars"], f"{score['likelihood']:.3f}", f"{score['z_cc_net']: .2f}", f"{score['z_cc_for']: .2f}", f"{score['z_cc_against']: .2f}", f"{score['max_angular_difference']:.1f}", str(sgtbx.change_of_basis_op(str(score["cb_op"]))), ) ) return rows
[docs] @staticmethod def summary_table(d): best_subgroup = d["subgroup_scores"][0] return ( ( "Best solution", str( sgtbx.space_group( hall_symbol=str(best_subgroup["patterson_group"]) ).info() ), ), ( "Unit cell", "%.3f %.3f %.3f %.1f %.1f %.1f" % tuple(best_subgroup["unit_cell"]), ), ("Reindex operator", best_subgroup["cb_op"]), ("Laue group probability", f"{best_subgroup['likelihood']:.3f}"), ("Laue group confidence", f"{best_subgroup['confidence']:.3f}"), )
def __str__(self): """Return a string representation of the results. Returns: str: """ output = [] output.append("Scoring individual symmetry elements") d = self.as_dict() output.append(dials.util.tabulate(self.sym_ops_table(d), headers="firstrow")) output.append("Scoring all possible sub-groups") output.append(dials.util.tabulate(self.subgroups_table(d), headers="firstrow")) output.append( "Best solution: %s" % self.best_solution.subgroup["best_subsym"].space_group_info() ) output.append( f"Unit cell: {str(self.best_solution.subgroup['best_subsym'].unit_cell())}" ) output.append( "Reindex operator: %s" % (self.best_solution.subgroup["cb_op_inp_best"] * self.cb_op_inp_min) ) output.append(f"Laue group probability: {self.best_solution.likelihood:.3f}") output.append(f"Laue group confidence: {self.best_solution.confidence:.3f}") return "\n".join(output)
[docs] def as_dict(self): """Return a dictionary representation of the results. Returns: dict """ d = {"cb_op_inp_min": self.cb_op_inp_min.as_xyz()} d["sym_op_scores"] = [] for rt_mx, score in self.sym_op_scores.items(): dd = score.as_dict() dd["operator"] = rt_mx.as_xyz() d["sym_op_scores"].append(dd) d["subgroup_scores"] = [] for score in self.subgroup_scores: dd = score.as_dict() dd["cb_op"] = ( sgtbx.change_of_basis_op(dd["cb_op"]) * self.cb_op_inp_min ).as_xyz() d["subgroup_scores"].append(dd) return d
[docs]class ScoreSymmetryElement: """Analyse intensities for presence of a given symmetry operation. 1) Calculate the probability of observing this CC if the sym op is present, p(CC; S), modelled by a Cauchy distribution centred on cc_true and width gamma = sigma_cc. 2) Calculate the probability of observing this CC if the sym op is NOT present, p(CC; !S). 3) Calculate the likelihood of symmetry element being present, p(S; CC) = p(CC; S) / (p(CC; S) + p(CC; !S)) See appendix A1 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292. <https://doi.org/10.1107/S090744491003982X>`_ """
[docs] def __init__(self, cc, sigma_cc, cc_true): """Initialise a ScoreSymmetryElement object. Args: cc (float): the correlation coefficient for this symmetry element sigma_cc (float): the estimated error in the correlation coefficient cc_true (float): the expected value of CC if the symmetry element is present, E(CC; S) """ self.cc = cc self.sigma_cc = sigma_cc self.z_cc = self.cc / self.sigma_cc score_cc = ScoreCorrelationCoefficient(self.cc, self.sigma_cc, cc_true) self.p_cc_given_s = score_cc.p_cc_given_s self.p_cc_given_not_s = score_cc.p_cc_given_not_s self.likelihood = score_cc.p_s_given_cc
@property def stars(self): # define stars attribute - used mainly for output if self.likelihood > 0.9: stars = "***" elif self.likelihood > 0.7: stars = "**" elif self.likelihood > 0.5: stars = "*" else: stars = "" return stars
[docs] def as_dict(self): """Return a dictionary representation of the symmetry element scoring. The dictionary will contain the following keys: - likelihood: The likelihood of the symmetry element being present - z_cc: The Z-score for the correlation coefficient - cc: The correlation coefficient for the symmetry element - operator: The xyz representation of the symmetry element Returns: dict: """ return { "likelihood": self.likelihood, "z_cc": self.z_cc, "cc": self.cc, "stars": self.stars, }
[docs]class ScoreSubGroup: """Score the probability of a given subgroup being the true subgroup. 1) Calculates overall Zcc scores for symmetry elements present/absent from the subgroup. 2) Calculates the overall likelihood for this subgroup. See appendix A2 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292. <https://doi.org/10.1107/S090744491003982X>`_ """
[docs] def __init__(self, subgroup, sym_op_scores): """Initialise a ScoreSubGroup object. Args: subgroup (dict): A dictionary describing the subgroup as generated by :class:`cctbx.sgtbx.lattice_symmetry.metric_subgroups`. sym_op_scores (list): A list of :class:`ScoreSymmetryElement` objects for each symmetry element possibly in the lattice symmetry. """ # Combined correlation coefficients for symmetry operations # present/absent from subgroup self.subgroup = subgroup patterson_group = subgroup["subsym"].space_group() # Overall Zcc scores for symmetry elements present/absent from subgroup self.z_cc_for = 0 self.z_cc_against = 0 n_for = 0 n_against = 0 PL_for = 0 PL_against = 0 power = 2 for score in sym_op_scores: if score.sym_op in patterson_group: self.z_cc_for += score.z_cc ** power n_for += 1 PL_for += math.log(score.p_cc_given_s) else: self.z_cc_against += score.z_cc ** power n_against += 1 PL_against += math.log(score.p_cc_given_not_s) # Overall likelihood for this subgroup self.likelihood = math.exp(PL_for + PL_against) if n_against > 0: self.z_cc_against = (self.z_cc_against / n_against) ** (1 / power) if n_for > 0: self.z_cc_for = (self.z_cc_for / n_for) ** (1 / power) self.z_cc_net = self.z_cc_for - self.z_cc_against self.confidence = 0
def __str__(self): """Return a string representation of the subgroup scores. Returns: str: """ return "{} {:.3f} {:.2f} {:.2f} {:.2f}".format( self.subgroup["best_subsym"].space_group_info(), self.likelihood, self.z_cc_net, self.z_cc_for, self.z_cc_against, ) @property def stars(self): if self.likelihood > 0.8: stars = "***" elif self.likelihood > 0.6: stars = "**" elif self.likelihood > 0.4: stars = "*" else: stars = "" return stars
[docs] def as_dict(self): """Return a dictionary representation of the subgroup scoring. The dictionary will contain the following keys: - patterson_group: The current subgroup - likelihood: The likelihood of the subgroup being correct - confidence: The confidence of the subgroup being correct - z_cc_for: The combined Z-scores for all symmetry elements present in the subgroup - z_cc_against: The combined Z-scores for all symmetry elements present in the lattice group but not in the subgroup - z_cc_net: The net Z-score, i.e. z_cc_for - z_cc_against - max_angular_difference: The maximum angular difference between the symmetrised unit cell and the P1 unit cell. - cb_op: The change of basis operation from the input unit cell to the 'best' unit cell. Returns: dict: """ return { "patterson_group": self.subgroup["best_subsym"] .space_group() .type() .hall_symbol(), "unit_cell": self.subgroup["best_subsym"].unit_cell().parameters(), "likelihood": self.likelihood, "confidence": self.confidence, "z_cc_net": self.z_cc_net, "z_cc_for": self.z_cc_for, "z_cc_against": self.z_cc_against, "max_angular_difference": self.subgroup["max_angular_difference"], "cb_op": f"{self.subgroup['cb_op_inp_best']}", "stars": self.stars, }