"""Methods for symmetry determination from partial datasets.
This module implements the methods of `Gildea, R. J. & Winter, G. (2018).
Acta Cryst. D74, 405-410 <https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
import json
import logging
import math
from typing import List
import numpy as np
from sklearn.neighbors import NearestNeighbors
import iotbx.phil
from cctbx import sgtbx
from libtbx import Auto
from scitbx import matrix
import dials.util
from dials.algorithms.indexing.symmetry import find_matching_symmetry
from dials.algorithms.symmetry import symmetry_base
from dials.algorithms.symmetry.cosym import engine as cosym_engine
from dials.algorithms.symmetry.cosym import target
from dials.algorithms.symmetry.laue_group import ScoreCorrelationCoefficient
from dials.util.observer import Subject
logger = logging.getLogger(__name__)
phil_scope = iotbx.phil.parse(
"""\
normalisation = kernel quasi *ml_iso ml_aniso
.type = choice
d_min = Auto
.type = float(value_min=0)
min_i_mean_over_sigma_mean = 4
.type = float(value_min=0)
min_cc_half = 0.6
.type = float(value_min=0, value_max=1)
lattice_group = None
.type = space_group
space_group = None
.type = space_group
lattice_symmetry_max_delta = 5.0
.type = float(value_min=0)
best_monoclinic_beta = True
.type = bool
.help = "If True, then for monoclinic centered cells, I2 will be preferred over C2 if"
"it gives a less oblique cell (i.e. smaller beta angle)."
dimensions = Auto
.type = int(value_min=2)
use_curvatures = True
.type = bool
weights = count standard_error
.type = choice
min_pairs = 3
.type = int(value_min=1)
.help = 'Minimum number of pairs for inclusion of correlation coefficient in calculation of Rij matrix.'
minimization {
engine = *scitbx scipy
.type = choice
max_iterations = 100
.type = int(value_min=0)
max_calls = None
.type = int(value_min=0)
}
nproc = None
.type = int(value_min=1)
.help = "Deprecated"
.deprecated = True
"""
)
[docs]class CosymAnalysis(symmetry_base, Subject):
"""Perform cosym analysis.
Perform cosym analysis on the input intensities using the methods of
`Gildea, R. J. & Winter, G. (2018). Acta Cryst. D74, 405-410
<https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
[docs] def __init__(self, intensities, params):
"""Initialise a CosymAnalysis object.
Args:
intensities (cctbx.miller.array): The intensities on which to perform
cosym analysis.
params (libtbx.phil.scope_extract): Parameters for the analysis.
"""
super().__init__(
intensities,
normalisation=params.normalisation,
lattice_symmetry_max_delta=params.lattice_symmetry_max_delta,
d_min=params.d_min,
min_i_mean_over_sigma_mean=params.min_i_mean_over_sigma_mean,
min_cc_half=params.min_cc_half,
relative_length_tolerance=None,
absolute_angle_tolerance=None,
best_monoclinic_beta=params.best_monoclinic_beta,
)
Subject.__init__(
self, events=["optimised", "analysed_symmetry", "analysed_clusters"]
)
self.params = params
if self.params.space_group is not None:
def _map_space_group_to_input_cell(intensities, space_group):
from cctbx.sgtbx.bravais_types import bravais_lattice
best_subgroup = find_matching_symmetry(
intensities.unit_cell(),
space_group,
best_monoclinic_beta=str(bravais_lattice(group=space_group))
== "mI",
)
cb_op_inp_best = best_subgroup["cb_op_inp_best"]
best_subsym = best_subgroup["best_subsym"]
cb_op_best_primitive = (
best_subsym.change_of_basis_op_to_primitive_setting()
)
sg_cb_op_inp_primitive = (
space_group.info().change_of_basis_op_to_primitive_setting()
)
sg_primitive = space_group.change_basis(sg_cb_op_inp_primitive)
sg_best = sg_primitive.change_basis(cb_op_best_primitive.inverse())
# best_subgroup above is the bravais type, so create thin copy here with the
# user-input space group instead
best_subsym = best_subsym.customized_copy(
space_group_info=sg_best.info()
)
best_subgroup = {
"subsym": best_subsym.change_basis(cb_op_inp_best.inverse()),
"best_subsym": best_subsym,
"cb_op_inp_best": cb_op_inp_best,
}
intensities = intensities.customized_copy(
space_group_info=sg_best.change_basis(
cb_op_inp_best.inverse()
).info()
)
return intensities, best_subgroup
self.intensities, self.best_subgroup = _map_space_group_to_input_cell(
self.intensities, self.params.space_group.group()
)
self.best_subgroup["cb_op_inp_best"] = (
self.best_subgroup["cb_op_inp_best"] * self.cb_op_inp_min
)
self.input_space_group = self.intensities.space_group()
else:
self.input_space_group = None
if self.params.lattice_group is not None:
tmp_intensities, _ = _map_space_group_to_input_cell(
self.intensities, self.params.lattice_group.group()
)
self.params.lattice_group = tmp_intensities.space_group_info()
def _intialise_target(self):
if self.params.dimensions is Auto:
dimensions = None
else:
dimensions = self.params.dimensions
if self.params.lattice_group is not None:
self.lattice_group = (
self.params.lattice_group.group()
.build_derived_patterson_group()
.info()
.primitive_setting()
.group()
)
self.target = target.Target(
self.intensities,
self.dataset_ids.as_numpy_array(),
min_pairs=self.params.min_pairs,
lattice_group=self.lattice_group,
dimensions=dimensions,
weights=self.params.weights,
)
def _determine_dimensions(self):
if self.params.dimensions is Auto and self.target.dim == 2:
self.params.dimensions = 2
elif self.params.dimensions is Auto:
logger.info("=" * 80)
logger.info(
"\nAutomatic determination of number of dimensions for analysis"
)
dimensions = []
functional = []
for dim in range(1, self.target.dim + 1):
logger.debug("Testing dimension: %i", dim)
self.target.set_dimensions(dim)
max_calls = self.params.minimization.max_calls
self._optimise(
self.params.minimization.engine,
max_iterations=self.params.minimization.max_iterations,
max_calls=min(20, max_calls) if max_calls else max_calls,
)
dimensions.append(dim)
functional.append(self.minimizer.fun)
# Find the elbow point of the curve, in the same manner as that used by
# distl spotfinder for resolution method 1 (Zhang et al 2006).
# See also dials/algorithms/spot_finding/per_image_analysis.py
x = np.array(dimensions)
y = np.array(functional)
slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
p_m = slopes.argmin()
x1 = matrix.col((x[p_m], y[p_m]))
x2 = matrix.col((x[-1], y[-1]))
gaps = []
v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()
for i in range(p_m, len(x)):
x0 = matrix.col((x[i], y[i]))
r = x1 - x0
g = abs(v.dot(r))
gaps.append(g)
p_g = np.array(gaps).argmax()
x_g = x[p_g + p_m]
logger.info(
dials.util.tabulate(
zip(dimensions, functional), headers=("Dimensions", "Functional")
)
)
logger.info("Best number of dimensions: %i", x_g)
self.target.set_dimensions(int(x_g))
logger.info("Using %i dimensions for analysis", self.target.dim)
[docs] def run(self):
self._intialise_target()
self._determine_dimensions()
self._optimise(
self.params.minimization.engine,
max_iterations=self.params.minimization.max_iterations,
max_calls=self.params.minimization.max_calls,
)
self._principal_component_analysis()
self._analyse_symmetry()
@Subject.notify_event(event="optimised")
def _optimise(self, engine, max_iterations=None, max_calls=None):
NN = len(self.input_intensities)
n_sym_ops = len(self.target.sym_ops)
coords = np.random.rand(NN * n_sym_ops * self.target.dim)
if engine == "scitbx":
self.minimizer = cosym_engine.minimize_scitbx_lbfgs(
self.target,
coords,
use_curvatures=self.params.use_curvatures,
max_iterations=max_iterations,
max_calls=max_calls,
)
else:
self.minimizer = cosym_engine.minimize_scipy(
self.target,
coords,
method="L-BFGS-B",
max_iterations=max_iterations,
max_calls=max_calls,
)
self.coords = self.minimizer.x.reshape(
self.target.dim, NN * n_sym_ops
).transpose()
def _principal_component_analysis(self):
# Perform PCA
from sklearn.decomposition import PCA
pca = PCA().fit(self.coords)
logger.info("Principal component analysis:")
logger.info(
"Explained variance: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_])
)
logger.info(
"Explained variance ratio: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_ratio_])
)
self.explained_variance = pca.explained_variance_
self.explained_variance_ratio = pca.explained_variance_ratio_
if self.target.dim > 3:
pca.n_components = 3
self.coords_reduced = pca.fit_transform(self.coords)
@Subject.notify_event(event="analysed_symmetry")
def _analyse_symmetry(self):
sym_ops = [sgtbx.rt_mx(s).new_denominators(1, 12) for s in self.target.sym_ops]
if not self.input_space_group:
self._symmetry_analysis = SymmetryAnalysis(
self.coords, sym_ops, self.subgroups, self.cb_op_inp_min
)
logger.info(str(self._symmetry_analysis))
self.best_solution = self._symmetry_analysis.best_solution
self.best_subgroup = self.best_solution.subgroup
else:
self.best_solution = None
self._symmetry_analysis = None
cosets = sgtbx.cosets.left_decomposition(
self.target._lattice_group,
self.best_subgroup["subsym"].space_group().build_derived_acentric_group(),
)
self.reindexing_ops = self._reindexing_ops(self.coords, sym_ops, cosets)
def _reindexing_ops(
self,
coords: np.ndarray,
sym_ops: List[sgtbx.rt_mx],
cosets: sgtbx.cosets.left_decomposition,
) -> List[sgtbx.change_of_basis_op]:
"""Identify the reindexing operator for each dataset.
Args:
coords (np.ndarray):
A flattened list of the N-dimensional vectors, i.e. coordinates in
the first dimension are stored first, followed by the coordinates in
the second dimension, etc.
sym_ops (List[sgtbx.rt_mx]): List of cctbx.sgtbx.rt_mx used for the cosym
symmetry analysis
cosets (sgtbx.cosets.left_decomposition): The left coset decomposition of the
lattice group with respect to the proposed Patterson group
Returns:
List[sgtbx.change_of_basis_op]: A list of reindexing operators corresponding
to each dataset.
"""
reindexing_ops = []
n_datasets = len(self.input_intensities)
n_sym_ops = len(sym_ops)
coord_ids = np.arange(n_datasets * n_sym_ops)
dataset_ids = coord_ids % n_datasets
# choose a high density point as seed
X = coords
nbrs = NearestNeighbors(
n_neighbors=min(11, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors(X)
average_distance = np.array([dist[1:].mean() for dist in distances])
i = average_distance.argmin()
xis = np.array([X[i]])
for j in range(n_datasets):
sel = np.where(dataset_ids == j)
X = coords[sel]
# Find nearest neighbour in cosine-space to the current cluster centroid
nbrs = NearestNeighbors(
n_neighbors=min(1, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors([xis.mean(axis=0)])
k = indices[0][0]
xis = np.append(xis, [X[k]], axis=0)
for partition in cosets.partitions:
if sym_ops[k] in partition:
cb_op = sgtbx.change_of_basis_op(partition[0]).new_denominators(
self.cb_op_inp_min
)
reindexing_ops.append(
(
self.cb_op_inp_min.inverse() * cb_op * self.cb_op_inp_min
).as_xyz()
)
break
return reindexing_ops
[docs] def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {
"input_symmetry": {
"hall_symbol": self.input_intensities[0]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.median_unit_cell.parameters(),
},
"cb_op_inp_min": self.cb_op_inp_min.as_xyz(),
"min_cell_symmetry": {
"hall_symbol": self.intensities.space_group().type().hall_symbol(),
"unit_cell": self.intensities.unit_cell().parameters(),
},
"lattice_point_group": self.lattice_group.type().hall_symbol(),
}
if self._symmetry_analysis is not None:
d.update(self._symmetry_analysis.as_dict())
return d
[docs] def as_json(self, filename=None, indent=2):
"""Return a json representation of the results.
Args:
filename (str): Optional filename to export the json representation of
the results.
indent (int): The indent level for pretty-printing of the json. If ``None``
is the most compact representation.
Returns:
str:
"""
d = self.as_dict()
json_str = json.dumps(d, indent=indent)
if filename:
with open(filename, "w") as f:
f.write(json_str)
return json.dumps(d, indent=indent)
[docs]class SymmetryAnalysis:
[docs] def __init__(self, coords, sym_ops, subgroups, cb_op_inp_min):
import scipy.spatial.distance as ssd
self.subgroups = subgroups
self.cb_op_inp_min = cb_op_inp_min
n_datasets = coords.shape[0] // len(sym_ops)
dist_mat = ssd.pdist(coords, metric="cosine")
cos_angle = 1 - ssd.squareform(dist_mat)
self._sym_ops_cos_angle = {}
for dataset_id in range(n_datasets):
for ref_sym_op_id in range(len(sym_ops)):
ref_idx = n_datasets * ref_sym_op_id + dataset_id
for sym_op_id in range(ref_sym_op_id + 1, len(sym_ops)):
op = sym_ops[ref_sym_op_id].inverse().multiply(sym_ops[sym_op_id])
op = op.new_denominators(1, 12)
comp_idx = n_datasets * sym_op_id + dataset_id
self._sym_ops_cos_angle.setdefault(op, [])
self._sym_ops_cos_angle[op].append(cos_angle[ref_idx, comp_idx])
self._score_symmetry_elements()
self._score_laue_groups()
def _score_symmetry_elements(self):
self.sym_op_scores = {}
for op, cos_angle in self._sym_ops_cos_angle.items():
cc_true = 1
cc = np.mean(cos_angle)
score = ScoreSymmetryElement(cc, sigma_cc=0.1, cc_true=cc_true)
score.sym_op = op
self.sym_op_scores[op] = score
def _score_laue_groups(self):
subgroup_scores = [
ScoreSubGroup(subgrp, list(self.sym_op_scores.values()))
for subgrp in self.subgroups.result_groups
]
total_likelihood = sum(score.likelihood for score in subgroup_scores)
for score in subgroup_scores:
score.likelihood /= total_likelihood
self.subgroup_scores = sorted(
subgroup_scores, key=lambda score: score.likelihood, reverse=True
)
# The 'confidence' scores are derived from the total probability of the best
# solution p_best and that for the next best solution p_next:
# confidence = [p_best * (p_best - p_next)]^1/2.
for i, score in enumerate(self.subgroup_scores[:-1]):
next_score = self.subgroup_scores[i + 1]
if score.likelihood > 0 and next_score.likelihood > 0:
lgc = score.likelihood * (score.likelihood - next_score.likelihood)
confidence = abs(lgc) ** 0.5
if lgc < 0:
confidence = -confidence
score.confidence = confidence
self.best_solution = self.subgroup_scores[0]
[docs] @staticmethod
def sym_ops_table(d):
header = ("likelihood", "Z-CC", "CC", "", "Operator")
rows = [header]
for score in d["sym_op_scores"]:
rows.append(
(
f"{score['likelihood']:.3f}",
f"{score['z_cc']:.2f}",
f"{score['cc']:.2f}",
score["stars"],
str(sgtbx.rt_mx(str(score["operator"])).r().info()),
)
)
return rows
[docs] @staticmethod
def subgroups_table(d):
header = (
"Patterson group",
"",
"Likelihood",
"NetZcc",
"Zcc+",
"Zcc-",
"delta",
"Reindex operator",
)
rows = [header]
for score in d["subgroup_scores"]:
rows.append(
(
str(
sgtbx.space_group(
hall_symbol=str(score["patterson_group"])
).info()
),
score["stars"],
f"{score['likelihood']:.3f}",
f"{score['z_cc_net']: .2f}",
f"{score['z_cc_for']: .2f}",
f"{score['z_cc_against']: .2f}",
f"{score['max_angular_difference']:.1f}",
str(sgtbx.change_of_basis_op(str(score["cb_op"]))),
)
)
return rows
[docs] @staticmethod
def summary_table(d):
best_subgroup = d["subgroup_scores"][0]
return (
(
"Best solution",
str(
sgtbx.space_group(
hall_symbol=str(best_subgroup["patterson_group"])
).info()
),
),
(
"Unit cell",
"%.3f %.3f %.3f %.1f %.1f %.1f" % tuple(best_subgroup["unit_cell"]),
),
("Reindex operator", best_subgroup["cb_op"]),
("Laue group probability", f"{best_subgroup['likelihood']:.3f}"),
("Laue group confidence", f"{best_subgroup['confidence']:.3f}"),
)
def __str__(self):
"""Return a string representation of the results.
Returns:
str:
"""
output = []
output.append("Scoring individual symmetry elements")
d = self.as_dict()
output.append(dials.util.tabulate(self.sym_ops_table(d), headers="firstrow"))
output.append("Scoring all possible sub-groups")
output.append(dials.util.tabulate(self.subgroups_table(d), headers="firstrow"))
output.append(
"Best solution: %s"
% self.best_solution.subgroup["best_subsym"].space_group_info()
)
output.append(
f"Unit cell: {str(self.best_solution.subgroup['best_subsym'].unit_cell())}"
)
output.append(
"Reindex operator: %s"
% (self.best_solution.subgroup["cb_op_inp_best"] * self.cb_op_inp_min)
)
output.append(f"Laue group probability: {self.best_solution.likelihood:.3f}")
output.append(f"Laue group confidence: {self.best_solution.confidence:.3f}")
return "\n".join(output)
[docs] def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {"cb_op_inp_min": self.cb_op_inp_min.as_xyz()}
d["sym_op_scores"] = []
for rt_mx, score in self.sym_op_scores.items():
dd = score.as_dict()
dd["operator"] = rt_mx.as_xyz()
d["sym_op_scores"].append(dd)
d["subgroup_scores"] = []
for score in self.subgroup_scores:
dd = score.as_dict()
dd["cb_op"] = (
sgtbx.change_of_basis_op(dd["cb_op"]) * self.cb_op_inp_min
).as_xyz()
d["subgroup_scores"].append(dd)
return d
[docs]class ScoreSymmetryElement:
"""Analyse intensities for presence of a given symmetry operation.
1) Calculate the probability of observing this CC if the sym op is present,
p(CC; S), modelled by a Cauchy distribution centred on cc_true and width
gamma = sigma_cc.
2) Calculate the probability of observing this CC if the sym op is
NOT present, p(CC; !S).
3) Calculate the likelihood of symmetry element being present,
p(S; CC) = p(CC; S) / (p(CC; S) + p(CC; !S))
See appendix A1 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
[docs] def __init__(self, cc, sigma_cc, cc_true):
"""Initialise a ScoreSymmetryElement object.
Args:
cc (float): the correlation coefficient for this symmetry element
sigma_cc (float): the estimated error in the correlation coefficient
cc_true (float): the expected value of CC if the symmetry element is present,
E(CC; S)
"""
self.cc = cc
self.sigma_cc = sigma_cc
self.z_cc = self.cc / self.sigma_cc
score_cc = ScoreCorrelationCoefficient(self.cc, self.sigma_cc, cc_true)
self.p_cc_given_s = score_cc.p_cc_given_s
self.p_cc_given_not_s = score_cc.p_cc_given_not_s
self.likelihood = score_cc.p_s_given_cc
@property
def stars(self):
# define stars attribute - used mainly for output
if self.likelihood > 0.9:
stars = "***"
elif self.likelihood > 0.7:
stars = "**"
elif self.likelihood > 0.5:
stars = "*"
else:
stars = ""
return stars
[docs] def as_dict(self):
"""Return a dictionary representation of the symmetry element scoring.
The dictionary will contain the following keys:
- likelihood: The likelihood of the symmetry element being present
- z_cc: The Z-score for the correlation coefficient
- cc: The correlation coefficient for the symmetry element
- operator: The xyz representation of the symmetry element
Returns:
dict:
"""
return {
"likelihood": self.likelihood,
"z_cc": self.z_cc,
"cc": self.cc,
"stars": self.stars,
}
[docs]class ScoreSubGroup:
"""Score the probability of a given subgroup being the true subgroup.
1) Calculates overall Zcc scores for symmetry elements present/absent from
the subgroup.
2) Calculates the overall likelihood for this subgroup.
See appendix A2 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
[docs] def __init__(self, subgroup, sym_op_scores):
"""Initialise a ScoreSubGroup object.
Args:
subgroup (dict): A dictionary describing the subgroup as generated by
:class:`cctbx.sgtbx.lattice_symmetry.metric_subgroups`.
sym_op_scores (list): A list of :class:`ScoreSymmetryElement` objects for each
symmetry element possibly in the lattice symmetry.
"""
# Combined correlation coefficients for symmetry operations
# present/absent from subgroup
self.subgroup = subgroup
patterson_group = subgroup["subsym"].space_group()
# Overall Zcc scores for symmetry elements present/absent from subgroup
self.z_cc_for = 0
self.z_cc_against = 0
n_for = 0
n_against = 0
PL_for = 0
PL_against = 0
power = 2
for score in sym_op_scores:
if score.sym_op in patterson_group:
self.z_cc_for += score.z_cc ** power
n_for += 1
PL_for += math.log(score.p_cc_given_s)
else:
self.z_cc_against += score.z_cc ** power
n_against += 1
PL_against += math.log(score.p_cc_given_not_s)
# Overall likelihood for this subgroup
self.likelihood = math.exp(PL_for + PL_against)
if n_against > 0:
self.z_cc_against = (self.z_cc_against / n_against) ** (1 / power)
if n_for > 0:
self.z_cc_for = (self.z_cc_for / n_for) ** (1 / power)
self.z_cc_net = self.z_cc_for - self.z_cc_against
self.confidence = 0
def __str__(self):
"""Return a string representation of the subgroup scores.
Returns:
str:
"""
return "{} {:.3f} {:.2f} {:.2f} {:.2f}".format(
self.subgroup["best_subsym"].space_group_info(),
self.likelihood,
self.z_cc_net,
self.z_cc_for,
self.z_cc_against,
)
@property
def stars(self):
if self.likelihood > 0.8:
stars = "***"
elif self.likelihood > 0.6:
stars = "**"
elif self.likelihood > 0.4:
stars = "*"
else:
stars = ""
return stars
[docs] def as_dict(self):
"""Return a dictionary representation of the subgroup scoring.
The dictionary will contain the following keys:
- patterson_group: The current subgroup
- likelihood: The likelihood of the subgroup being correct
- confidence: The confidence of the subgroup being correct
- z_cc_for: The combined Z-scores for all symmetry elements present in the
subgroup
- z_cc_against: The combined Z-scores for all symmetry elements present in
the lattice group but not in the subgroup
- z_cc_net: The net Z-score, i.e. z_cc_for - z_cc_against
- max_angular_difference: The maximum angular difference between the
symmetrised unit cell and the P1 unit cell.
- cb_op: The change of basis operation from the input unit cell to the
'best' unit cell.
Returns:
dict:
"""
return {
"patterson_group": self.subgroup["best_subsym"]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.subgroup["best_subsym"].unit_cell().parameters(),
"likelihood": self.likelihood,
"confidence": self.confidence,
"z_cc_net": self.z_cc_net,
"z_cc_for": self.z_cc_for,
"z_cc_against": self.z_cc_against,
"max_angular_difference": self.subgroup["max_angular_difference"],
"cb_op": f"{self.subgroup['cb_op_inp_best']}",
"stars": self.stars,
}