"""Refiner is the refinement module public interface. RefinerFactory is
what should usually be used to construct a Refiner."""
import copy
import logging
import math
import psutil
import libtbx
from dxtbx.model.experiment_list import ExperimentList
from libtbx.phil import parse
import dials.util
from dials.algorithms.refinement import DialsRefineConfigError
from dials.algorithms.refinement.constraints import ConstraintManagerFactory
from dials.algorithms.refinement.engine import AdaptLstbx, refinery_phil_str
from dials.algorithms.refinement.parameterisation import (
build_prediction_parameterisation,
)
from dials.algorithms.refinement.parameterisation import (
phil_str as parameterisation_phil_str,
)
from dials.algorithms.refinement.parameterisation.autoreduce import AutoReduce
from dials.algorithms.refinement.parameterisation.parameter_report import (
ParameterReporter,
)
from dials.algorithms.refinement.prediction.managed_predictors import (
ExperimentsPredictorFactory,
)
from dials.algorithms.refinement.refinement_helpers import ordinal_number, string_sel
from dials.algorithms.refinement.reflection_manager import ReflectionManagerFactory
from dials.algorithms.refinement.reflection_manager import (
phil_str as reflections_phil_str,
)
from dials.algorithms.refinement.restraints import RestraintsParameterisation
from dials.algorithms.refinement.target import TargetFactory
from dials.algorithms.refinement.target import phil_str as target_phil_str
from dials.array_family import flex
logger = logging.getLogger(__name__)
# The include scope directive does not work here. For example:
#
# include scope dials.algorithms.refinement.outlier_detection.phil_scope
#
# results in:
#
# AttributeError: 'module' object has no attribute 'refinement'
#
# to work around this, just include external phil scopes as strings
format_data = {
"reflections_phil": reflections_phil_str,
"target_phil": target_phil_str,
"parameterisation_phil": parameterisation_phil_str,
"refinery_phil": refinery_phil_str,
}
phil_scope = parse(
"""
refinement
.help = "Parameters to configure the refinement"
{
mp
.expert_level = 2
{
nproc = 1
.type = int(value_min=1)
.help = "The number of processes to use. Not all choices of refinement"
"engine support nproc > 1. Where multiprocessing is possible,"
"it is helpful only in certain circumstances, so this is not"
"recommended for typical use."
}
parameterisation
.help = "Parameters to control the parameterisation of experimental models"
{
%(parameterisation_phil)s
}
%(refinery_phil)s
target
.help = "Parameters to configure the target function"
.expert_level = 1
{
%(target_phil)s
}
reflections
.help = "Parameters used by the reflection manager"
{
%(reflections_phil)s
}
}
"""
% format_data,
process_includes=True,
)
RAD2DEG = 180 / math.pi
def _copy_experiments_for_refining(experiments):
"""
Make a partial copy of experiments, copying properties used in refinement.
Any experiment property that can be altered by refinement e.g. Beam,
Detector and Goniometer will be deep-copied, whereas anything that the
refiner doesn't touch (e.g. Scan, ImageSet) will be left as original
references.
This makes it safe to pass an object into the refiner or get an object
out of the refiner without having to worry about your copy being
unexpectedly altered, but saves time by avoiding the copying of potentially
expensive experiment properties (e.g. ImageSet and its attributes).
Args
experiments (Experiment or ExperimentList or Iterable[Experiment]):
Returns:
ExperimentList: The copied experiments in new ExperimentList
"""
# Look for a non-list e.g. a single experiment and convert to a list
if not hasattr(experiments, "__iter__"):
experiments = [experiments]
out_list = ExperimentList()
# Save a map of object id to copies so shared objects remain shared
id_memo = {}
# Copy each experiment individually
for experiment in experiments:
# Be inclusive about the initial copy
new_exp = copy.copy(experiment)
# Ensure every 'refined' attribute is uniquely copied
for model in ["beam", "goniometer", "detector", "crystal"]:
original = getattr(experiment, model)
if id(original) not in id_memo:
id_memo[id(original)] = copy.deepcopy(original)
# assign the new copy to the experiment
setattr(new_exp, model, id_memo[id(original)])
# Collect this together
out_list.append(new_exp)
return out_list
def _trim_scans_to_observations(experiments, reflections):
"""Check the range of each scan matches the range of observed data and
trim the scan to match if it is too wide"""
# Get observed image number (or at least observed phi)
obs_phi = reflections["xyzobs.mm.value"].parts()[2]
try:
obs_z = reflections["xyzobs.px.value"].parts()[2]
except KeyError:
obs_z = None
# Get z_min and z_max from shoeboxes if present
try:
shoebox = reflections["shoebox"]
bb = shoebox.bounding_boxes()
z_min, z_max = bb.parts()[4:]
if z_min.all_eq(0):
shoebox = None
except KeyError:
shoebox = None
for iexp, exp in enumerate(experiments):
sel = reflections["id"] == iexp
isel = sel.iselection()
if obs_z is not None:
exp_z = obs_z.select(isel)
else:
exp_phi = obs_phi.select(isel)
exp_z = exp.scan.get_array_index_from_angle(exp_phi, deg=False)
start, stop = exp.scan.get_array_range()
min_exp_z = flex.min(exp_z)
max_exp_z = flex.max(exp_z)
# If observed array range is correct, skip to next experiment
if int(min_exp_z) == start and int(math.ceil(max_exp_z)) == stop:
continue
# Extend array range either by shoebox size, or 0.5 deg if shoebox not available
if shoebox is not None:
obs_start = flex.min(z_min.select(isel))
obs_stop = flex.max(z_max.select(isel))
else:
obs_start = int(min_exp_z)
obs_stop = int(math.ceil(max_exp_z))
half_deg_in_images = int(math.ceil(0.5 / exp.scan.get_oscillation()[1]))
obs_start -= half_deg_in_images
obs_stop += half_deg_in_images
# Convert obs_start, obs_stop from position in array range to integer image number
if obs_start > start or obs_stop < stop:
im_start = max(start, obs_start) + 1
im_stop = min(obs_stop, stop)
logger.warning(
"The reflections for experiment {0} do not fill the scan range. The scan will be trimmed "
"to images {{{1},{2}}} to match the range of observed data".format(
iexp, im_start, im_stop
)
)
# Ensure the scan is unique to this experiment and set trimmed limits
exp.scan = copy.deepcopy(exp.scan)
new_oscillation = (
exp.scan.get_angle_from_image_index(im_start),
exp.scan.get_oscillation()[1],
)
exp.scan.set_image_range((im_start, im_stop))
exp.scan.set_oscillation(new_oscillation)
return experiments
[docs]class RefinerFactory:
"""Factory class to create refiners"""
@staticmethod
def _filter_reflections(reflections):
"""Return a copy of the input reflections filtered to keep only
those columns that are required by refinement"""
cols = [
"id",
"miller_index",
"panel",
"s1",
"xyzobs.mm.value",
"xyzobs.px.value",
"xyzcal.px",
"xyzobs.mm.variance",
"flags",
"shoebox",
"delpsical.weights",
]
# NB xyzobs.px.value & xyzcal.px required by SauterPoon outlier rejector
# NB delpsical.weights is used by ExternalDelPsiWeightingStrategy
rt = flex.reflection_table()
# copy columns to the new table. Could use the select method
# for this except that 's1' is optional in the input so would want
# to copy that in like this if present anyway
for k in cols:
if k in reflections:
rt[k] = reflections[k]
return rt
[docs] @classmethod
def from_parameters_data_experiments(cls, params, reflections, experiments):
# TODO Checks on the input
# E.g. does every experiment contain at least one overlapping model with at
# least one other experiment? Are all the experiments either rotation series
# or stills (the combination of both not yet supported)?
# copy the experiments
experiments = _copy_experiments_for_refining(experiments)
# copy and filter the reflections
reflections = cls._filter_reflections(reflections)
return cls._build_components(params, reflections, experiments)
@classmethod
def _build_components(cls, params, reflections, experiments):
"""low level build"""
# Currently a refinement job can only have one parameterisation of the
# prediction equation. This can either be of the XYDelPsi (stills) type, the
# XYPhi (scans) type or the scan-varying XYPhi type with a varying crystal
# model
single_as_still = params.refinement.parameterisation.treat_single_image_as_still
exps_are_stills = []
for exp in experiments:
if exp.scan is None:
exps_are_stills.append(True)
elif exp.scan.get_num_images() == 1:
if single_as_still:
exps_are_stills.append(True)
elif exp.scan.is_still():
exps_are_stills.append(True)
else:
exps_are_stills.append(False)
else:
if exp.scan.get_oscillation()[1] <= 0.0:
raise DialsRefineConfigError("Cannot refine a zero-width scan")
exps_are_stills.append(False)
# check experiment types are consistent
if not all(exps_are_stills[0] == e for e in exps_are_stills):
raise DialsRefineConfigError("Cannot refine a mixture of stills and scans")
do_stills = exps_are_stills[0]
# If experiments are stills, ensure scan-varying refinement won't be attempted
if do_stills:
params.refinement.parameterisation.scan_varying = False
# Refiner does not accept scan_varying=Auto. This is a special case for
# doing macrocycles of refinement in dials.refine.
if params.refinement.parameterisation.scan_varying is libtbx.Auto:
params.refinement.parameterisation.scan_varying = False
# Calculate reflection block_width for scan-varying refinement. Trim scans
# to the extent of the observations, if requested.
if params.refinement.parameterisation.scan_varying:
if params.refinement.parameterisation.trim_scan_to_observations:
experiments = _trim_scans_to_observations(experiments, reflections)
from dials.algorithms.refinement.reflection_manager import BlockCalculator
block_calculator = BlockCalculator(experiments, reflections)
if params.refinement.parameterisation.compose_model_per == "block":
reflections = block_calculator.per_width(
params.refinement.parameterisation.block_width, deg=True
)
elif params.refinement.parameterisation.compose_model_per == "image":
reflections = block_calculator.per_image()
logger.debug("\nBuilding reflection manager")
logger.debug("Input reflection list size = %d observations", len(reflections))
# create reflection manager
refman = ReflectionManagerFactory.from_parameters_reflections_experiments(
params.refinement.reflections, reflections, experiments, do_stills
)
logger.debug(
"Number of observations that pass initial inclusion criteria = %d",
refman.get_accepted_refs_size(),
)
sample_size = refman.get_sample_size()
if sample_size > 0:
logger.debug("Working set size = %d observations", sample_size)
logger.debug("Reflection manager built\n")
# configure use of sparse data types
params = cls.config_sparse(params, experiments)
do_sparse = params.refinement.parameterisation.sparse
# create managed reflection predictor
ref_predictor = ExperimentsPredictorFactory.from_experiments(
experiments,
force_stills=do_stills,
spherical_relp=params.refinement.parameterisation.spherical_relp_model,
)
# Predict for the managed observations, set columns for residuals and set
# the used_in_refinement flag to the predictions
obs = refman.get_obs()
ref_predictor(obs)
x_obs, y_obs, phi_obs = obs["xyzobs.mm.value"].parts()
x_calc, y_calc, phi_calc = obs["xyzcal.mm"].parts()
obs["x_resid"] = x_calc - x_obs
obs["y_resid"] = y_calc - y_obs
obs["phi_resid"] = phi_calc - phi_obs
# determine whether to do basic centroid analysis to automatically
# determine outlier rejection block
if params.refinement.reflections.outlier.block_width is libtbx.Auto:
ca = refman.get_centroid_analyser()
analysis = ca(calc_average_residuals=False, calc_periodograms=False)
else:
analysis = None
# Now predictions and centroid analysis are available, so we can finalise
# the reflection manager
refman.finalise(analysis)
# Create model parameterisations
logger.debug("Building prediction equation parameterisation")
pred_param = build_prediction_parameterisation(
params.refinement.parameterisation, experiments, refman, do_stills
)
# Build a constraints manager, if requested
cmf = ConstraintManagerFactory(params, pred_param)
constraints_manager = cmf()
# Test for parameters that have too little data to refine and act accordingly
autoreduce = AutoReduce(
params.refinement.parameterisation.auto_reduction,
pred_param,
refman,
constraints_manager,
cmf,
)
autoreduce()
# if reduction was done, constraints_manager will have changed
constraints_manager = autoreduce.constraints_manager
# Build a restraints parameterisation (if requested).
# Only unit cell restraints are supported at the moment.
restraints_parameterisation = cls.config_restraints(
params.refinement.parameterisation, pred_param
)
# Parameter reporting
logger.debug("Prediction equation parameterisation built")
logger.debug("Parameter order : name mapping")
for i, e in enumerate(pred_param.get_param_names()):
logger.debug("Parameter %03d : %s", i + 1, e)
param_reporter = ParameterReporter(
pred_param.get_detector_parameterisations(),
pred_param.get_beam_parameterisations(),
pred_param.get_crystal_orientation_parameterisations(),
pred_param.get_crystal_unit_cell_parameterisations(),
pred_param.get_goniometer_parameterisations(),
)
# Create target function
logger.debug("Building target function")
target = cls.config_target(
params.refinement.target,
experiments,
refman,
ref_predictor,
pred_param,
restraints_parameterisation,
do_stills,
do_sparse,
)
logger.debug("Target function built")
# create refinery
logger.debug("Building refinement engine")
refinery = cls.config_refinery(params, target, pred_param, constraints_manager)
logger.debug("Refinement engine built")
nparam = len(pred_param)
ndim = target.dim
nref = len(refman.get_matches())
logger.info(
"There are %s parameters to refine against %s reflections in %s dimensions",
nparam,
nref,
ndim,
)
if not params.refinement.parameterisation.sparse and isinstance(
refinery, AdaptLstbx
):
dense_jacobian_gigabytes = (
nparam * nref * ndim * flex.double.element_size()
) / 1e9
avail_memory_gigabytes = psutil.virtual_memory().available / 1e9
# Report if the Jacobian requires a large amount of storage
if (
dense_jacobian_gigabytes > 0.2 * avail_memory_gigabytes
or dense_jacobian_gigabytes > 0.5
):
logger.info(
"Storage of the Jacobian matrix requires %.1f GB",
dense_jacobian_gigabytes,
)
# build refiner interface and return
if params.refinement.parameterisation.scan_varying:
refiner = ScanVaryingRefiner
else:
refiner = Refiner
return refiner(
experiments, pred_param, param_reporter, refman, target, refinery
)
[docs] @staticmethod
def config_sparse(params, experiments):
"""Configure whether to use sparse datatypes"""
# Automatic selection for sparse parameter
if params.refinement.parameterisation.sparse == libtbx.Auto:
if len(experiments) > 1:
params.refinement.parameterisation.sparse = True
else:
params.refinement.parameterisation.sparse = False
if params.refinement.refinery.engine == "SparseLevMar":
params.refinement.parameterisation.sparse = True
if params.refinement.mp.nproc > 1:
if params.refinement.refinery.engine != "SparseLevMar":
# sparse vectors cannot be pickled, so can't use easy_mp here
params.refinement.parameterisation.sparse = False
else:
pass # but SparseLevMar requires sparse jacobian; does not implement mp
# Check incompatible selection
elif (
params.refinement.parameterisation.sparse and params.refinement.mp.nproc > 1
):
logger.warning(
"Could not set sparse=True and nproc=%s", params.refinement.mp.nproc
)
logger.warning("Resetting sparse=False")
params.refinement.parameterisation.sparse = False
return params
[docs] @staticmethod
def config_restraints(params, pred_param):
"""Given a set of user parameters plus a model parameterisation, create
restraints plus a parameterisation of these restraints
Params:
params: The input PHIL parameters
pred_param: A PredictionParameters object
Returns:
A restraints parameterisation or None
"""
if not any(
(
params.crystal.unit_cell.restraints.tie_to_target,
params.crystal.unit_cell.restraints.tie_to_group,
)
):
return None
if params.scan_varying and not params.crystal.unit_cell.force_static:
logger.warning("Restraints will be ignored for scan_varying=True")
return None
det_params = pred_param.get_detector_parameterisations()
beam_params = pred_param.get_beam_parameterisations()
xl_ori_params = pred_param.get_crystal_orientation_parameterisations()
xl_uc_params = pred_param.get_crystal_unit_cell_parameterisations()
gon_params = pred_param.get_goniometer_parameterisations()
rp = RestraintsParameterisation(
detector_parameterisations=det_params,
beam_parameterisations=beam_params,
xl_orientation_parameterisations=xl_ori_params,
xl_unit_cell_parameterisations=xl_uc_params,
goniometer_parameterisations=gon_params,
)
# Shorten params path
cell_r = params.crystal.unit_cell.restraints
for tie in cell_r.tie_to_target:
if len(tie.values) != 6:
raise DialsRefineConfigError(
"6 cell parameters must be provided as the tie_to_target.values."
)
if len(tie.sigmas) != 6:
raise DialsRefineConfigError(
"6 sigmas must be provided as the tie_to_target.sigmas. "
"Note that individual sigmas of 0.0 will remove "
"the restraint for the corresponding cell parameter."
)
if tie.id is None:
# get one experiment id for each parameterisation to apply to all
tie.id = [e.get_experiment_ids()[0] for e in xl_uc_params]
for exp_id in tie.id:
rp.add_restraints_to_target_xl_unit_cell(exp_id, tie.values, tie.sigmas)
for tie in cell_r.tie_to_group:
if len(tie.sigmas) != 6:
raise DialsRefineConfigError(
"6 sigmas must be provided as the tie_to_group.sigmas. "
"Note that individual sigmas of 0.0 will remove "
"the restraint for the corresponding cell parameter."
)
if tie.id is None:
rp.add_restraints_to_group_xl_unit_cell(tie.target, "all", tie.sigmas)
else:
rp.add_restraints_to_group_xl_unit_cell(tie.target, tie.id, tie.sigmas)
return rp
[docs] @staticmethod
def config_refinery(params, target, pred_param, constraints_manager):
"""Given a set of parameters, a target class, a prediction
parameterisation class and a constraints_manager (which could be None),
build a refinery
Params:
params The input parameters
Returns:
The refinery instance
"""
# Shorten parameter path
options = params.refinement.refinery
if options.engine == "SimpleLBFGS":
from dials.algorithms.refinement.engine import SimpleLBFGS as refinery
elif options.engine == "LBFGScurvs":
from dials.algorithms.refinement.engine import LBFGScurvs as refinery
elif options.engine == "GaussNewton":
from dials.algorithms.refinement.engine import (
GaussNewtonIterations as refinery,
)
elif options.engine == "LevMar":
from dials.algorithms.refinement.engine import (
LevenbergMarquardtIterations as refinery,
)
elif options.engine == "SparseLevMar":
from dials.algorithms.refinement.sparse_engine import (
SparseLevenbergMarquardtIterations as refinery,
)
else:
raise RuntimeError(
"Refinement engine " + options.engine + " not recognised"
)
logger.debug("Selected refinement engine type: %s", options.engine)
engine = refinery(
target=target,
prediction_parameterisation=pred_param,
constraints_manager=constraints_manager,
log=options.log,
tracking=options.journal,
max_iterations=options.max_iterations,
)
if params.refinement.mp.nproc > 1:
nproc = params.refinement.mp.nproc
try:
engine.set_nproc(nproc)
except NotImplementedError:
logger.warning(
"Could not set nproc=%s for refinement engine of type %s",
nproc,
options.engine,
)
return engine
# Overload to allow subclasses of RefinerFactory to use a different
# TargetFactory
[docs] @staticmethod
def config_target(
params,
experiments,
reflection_manager,
predictor,
pred_param,
restraints_param,
do_stills,
do_sparse,
):
target = TargetFactory.from_parameters_and_experiments(
params,
experiments,
reflection_manager,
predictor,
pred_param,
restraints_param,
do_stills,
do_sparse,
)
return target
[docs]class Refiner:
"""Public interface for performing DIALS refinement.
Public methods:
run
rmsds
get_experiments
get_matches
get_param_reporter
parameter_correlation_plot
selection_used_for_refinement
predict_for_reflection_table
predict_for_indexed
Notes:
* The return value of run is a recorded history of the refinement
* The experiments accessor provides a copy of the experiments used by
refinement
* get_matches exposes the function of the same name from the privately
stored reflection manager
* The return value of selection_used_for_refinement is a flex.bool
"""
[docs] def __init__(
self, experiments, pred_param, param_reporter, refman, target, refinery
):
"""
Mandatory arguments:
experiments - a dxtbx ExperimentList object
pred_param - An object derived from the PredictionParameterisation class
param_reporter -A ParameterReporter object
refman - A ReflectionManager object
target - An object derived from the Target class
refinery - An object derived from the Refinery class
"""
# the experimental models
self._experiments = experiments
# refinement module main objects
self._pred_param = pred_param
self._refman = refman
self._target = target
self._refinery = refinery
# parameter reporter
self._param_report = param_reporter
# Keep track of whether this is stills or scans type refinement
self.experiment_type = refman.experiment_type
return
[docs] def get_experiments(self):
"""Return a copy of the current refiner experiments"""
return _copy_experiments_for_refining(self._experiments)
[docs] def rmsds(self):
"""Return rmsds of the current model"""
# ensure predictions for the matches are up to date
self._refinery.prepare_for_step()
return self._target.rmsds()
[docs] def rmsds_for_reflection_table(self, reflections):
"""Calculate unweighted RMSDs for the specified reflections"""
# ensure predictions for these reflections are up to date
preds = self.predict_for_reflection_table(reflections)
return self._target.rmsds_for_reflection_table(preds)
[docs] def get_matches(self):
"""Delegated to the reflection manager"""
return self._refman.get_matches()
[docs] def get_free_reflections(self):
"""Delegated to the reflection manager"""
return self._refman.get_free_reflections()
[docs] def get_param_reporter(self):
"""Get the ParameterReport object linked to this Refiner"""
return self._param_report
[docs] def get_parameter_correlation_matrix(self, step, col_select=None):
"""Return the correlation matrix between columns of the Jacobian at
the specified refinement step. The parameter col_select can be used
to select subsets of the full number of columns. The column labels
are also returned as a list of strings"""
corrmats = self._refinery.get_correlation_matrix_for_step(step)
if corrmats is None:
return None, None
all_labels = self._pred_param.get_param_names()
if col_select is None:
col_select = list(range(len(all_labels)))
sel = string_sel(col_select, all_labels)
labels = [e for e, s in zip(all_labels, sel) if s]
num_cols = len(labels)
if num_cols == 0:
return None, None
for k, corrmat in corrmats.items():
assert corrmat.is_square_matrix()
idx = flex.bool(sel).iselection()
sub_corrmat = flex.double(flex.grid(num_cols, num_cols))
for (i, x) in enumerate(idx):
for (j, y) in enumerate(idx):
sub_corrmat[i, j] = corrmat[x, y]
corrmats[k] = sub_corrmat
return (corrmats, labels)
@property
def history(self):
"""Get the refinement engine's step history"""
return self._refinery.history
[docs] def print_step_table(self):
"""print useful output about refinement steps in the form of a simple table"""
logger.info("\nRefinement steps:")
rmsd_multipliers = []
header = ["Step", "Nref"]
for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units):
if units == "mm":
header.append(name + "\n(mm)")
rmsd_multipliers.append(1.0)
elif units == "rad": # convert radians to degrees for reporting
header.append(name + "\n(deg)")
rmsd_multipliers.append(RAD2DEG)
else: # leave unknown units alone
header.append(name + "\n(" + units + ")")
rows = []
for i in range(self._refinery.history.get_nrows()):
rmsds = [
r * m
for (r, m) in zip(self._refinery.history["rmsd"][i], rmsd_multipliers)
]
rows.append(
[str(i), str(self._refinery.history["num_reflections"][i])]
+ [f"{r:.5g}" for r in rmsds]
)
logger.info(dials.util.tabulate(rows, header))
logger.info(self._refinery.history.reason_for_termination)
return
[docs] def print_out_of_sample_rmsd_table(self):
"""print out-of-sample RSMDs per step, if these were tracked"""
# check if it makes sense to proceed
if "out_of_sample_rmsd" not in self._refinery.history:
return
nref = len(self.get_free_reflections())
if nref < 10:
return # don't do anything if very few refs
logger.info("\nRMSDs for out-of-sample (free) reflections:")
rmsd_multipliers = []
header = ["Step", "Nref"]
for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units):
if units == "mm":
header.append(name + "\n(mm)")
rmsd_multipliers.append(1.0)
elif units == "rad": # convert radians to degrees for reporting
header.append(name + "\n(deg)")
rmsd_multipliers.append(RAD2DEG)
else: # leave unknown units alone
header.append(name + "\n(" + units + ")")
rows = []
for i in range(self._refinery.history.get_nrows()):
rmsds = [
r * m
for r, m in zip(
self._refinery.history["out_of_sample_rmsd"][i], rmsd_multipliers
)
]
rows.append([str(i), str(nref)] + [f"{e:.5g}" for e in rmsds])
logger.info(dials.util.tabulate(rows, header))
return
[docs] def print_exp_rmsd_table(self):
"""print useful output about refinement steps in the form of a simple table"""
logger.info("\nRMSDs by experiment:")
header = ["Exp\nid", "Nref"]
for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units):
if name == "RMSD_X" or name == "RMSD_Y" and units == "mm":
header.append(name + "\n(px)")
elif name == "RMSD_Phi" and units == "rad":
# will convert radians to images for reporting of scans
header.append("RMSD_Z" + "\n(images)")
elif units == "rad":
# will convert other angles in radians to degrees (e.g. for
# RMSD_DeltaPsi and RMSD_2theta)
header.append(name + "\n(deg)")
else: # skip other/unknown RMSDs
pass
rows = []
for iexp, exp in enumerate(self._experiments):
detector = exp.detector
px_sizes = [p.get_pixel_size() for p in detector]
it = iter(px_sizes)
px_size = next(it)
if not all(tst == px_size for tst in it):
logger.info(
"The detector in experiment %d does not have the same pixel "
+ "sizes on each panel. Skipping...",
iexp,
)
continue
px_per_mm = [1.0 / e for e in px_size]
scan = exp.scan
try:
images_per_rad = 1.0 / abs(scan.get_oscillation(deg=False)[1])
except (AttributeError, ZeroDivisionError):
images_per_rad = None
raw_rmsds = self._target.rmsds_for_experiment(iexp)
if raw_rmsds is None:
continue # skip experiments where rmsd cannot be calculated
num = self._target.get_num_matches_for_experiment(iexp)
rmsds = []
for (name, units, rmsd) in zip(
self._target.rmsd_names, self._target.rmsd_units, raw_rmsds
):
if name == "RMSD_X" and units == "mm":
rmsds.append(rmsd * px_per_mm[0])
elif name == "RMSD_Y" and units == "mm":
rmsds.append(rmsd * px_per_mm[1])
elif name == "RMSD_Phi" and units == "rad":
rmsds.append(rmsd * images_per_rad)
elif units == "rad":
rmsds.append(rmsd * RAD2DEG)
rows.append([str(iexp), str(num)] + [f"{r:.5g}" for r in rmsds])
if len(rows) > 0:
logger.info(dials.util.tabulate(rows, header))
return
[docs] def print_panel_rmsd_table(self):
"""print useful output about refinement steps in the form of a simple table"""
if len(self._experiments.scans()) > 1:
logger.warning(
"Multiple scans present. Only the first scan will be used "
"to determine the image width for reporting RMSDs"
)
scan = self._experiments.scans()[0]
try:
images_per_rad = 1.0 / abs(scan.get_oscillation(deg=False)[1])
except AttributeError:
images_per_rad = None
for idetector, detector in enumerate(self._experiments.detectors()):
if len(detector) == 1:
continue
logger.info("\nDetector %s RMSDs by panel:", idetector + 1)
header = ["Panel\nid", "Nref"]
for (name, units) in zip(self._target.rmsd_names, self._target.rmsd_units):
if name == "RMSD_X" or name == "RMSD_Y" and units == "mm":
header.append(name + "\n(px)")
elif (
name == "RMSD_Phi" and units == "rad"
): # convert radians to images for reporting of scans
header.append("RMSD_Z" + "\n(images)")
elif (
name == "RMSD_DeltaPsi" and units == "rad"
): # convert radians to degrees for reporting of stills
header.append(name + "\n(deg)")
else: # skip RMSDs that cannot be expressed in image/scan space
pass
rows = []
for ipanel, panel in enumerate(detector):
px_size = panel.get_pixel_size()
px_per_mm = [1.0 / e for e in px_size]
num = self._target.get_num_matches_for_panel(ipanel)
if num <= 0:
continue
raw_rmsds = self._target.rmsds_for_panel(ipanel)
if raw_rmsds is None:
continue # skip panels where rmsd cannot be calculated
rmsds = []
for (name, units, rmsd) in zip(
self._target.rmsd_names, self._target.rmsd_units, raw_rmsds
):
if name == "RMSD_X" and units == "mm":
rmsds.append(rmsd * px_per_mm[0])
elif name == "RMSD_Y" and units == "mm":
rmsds.append(rmsd * px_per_mm[1])
elif name == "RMSD_Phi" and units == "rad":
rmsds.append(rmsd * images_per_rad)
elif name == "RMSD_DeltaPsi" and units == "rad":
rmsds.append(rmsd * RAD2DEG)
rows.append([str(ipanel), str(num)] + [f"{r:.5g}" for r in rmsds])
if len(rows) > 0:
logger.info(dials.util.tabulate(rows, header))
return
[docs] def run(self):
"""Run refinement"""
####################################
# Do refinement and return history #
####################################
logger.debug("\nExperimental models before refinement:")
for i, beam in enumerate(self._experiments.beams()):
logger.debug(ordinal_number(i) + " " + str(beam))
for i, detector in enumerate(self._experiments.detectors()):
logger.debug(ordinal_number(i) + " " + str(detector))
for i, goniometer in enumerate(self._experiments.goniometers()):
if goniometer is None:
continue
logger.debug(ordinal_number(i) + " " + str(goniometer))
for i, scan in enumerate(self._experiments.scans()):
if scan is None:
continue
logger.debug(ordinal_number(i) + " " + str(scan))
for i, crystal in enumerate(self._experiments.crystals()):
logger.debug(ordinal_number(i) + " " + str(crystal))
self._refinery.run()
# These involve calculation, so skip them when output is quiet
if logger.getEffectiveLevel() < logging.ERROR:
self.print_step_table()
self.print_out_of_sample_rmsd_table()
self.print_exp_rmsd_table()
det_npanels = [len(d) for d in self._experiments.detectors()]
if any(n > 1 for n in det_npanels):
self.print_panel_rmsd_table()
# Perform post-run tasks to write the refined states back to the models
self._update_models()
logger.debug("\nExperimental models after refinement:")
for i, beam in enumerate(self._experiments.beams()):
logger.debug(ordinal_number(i) + " " + str(beam))
for i, detector in enumerate(self._experiments.detectors()):
logger.debug(ordinal_number(i) + " " + str(detector))
for i, goniometer in enumerate(self._experiments.goniometers()):
if goniometer is None:
continue
logger.debug(ordinal_number(i) + " " + str(goniometer))
for i, scan in enumerate(self._experiments.scans()):
if scan is None:
continue
logger.debug(ordinal_number(i) + " " + str(scan))
for i, crystal in enumerate(self._experiments.crystals()):
logger.debug(ordinal_number(i) + " " + str(crystal))
# Report on the refined parameters
logger.debug(str(self._param_report))
# Return the refinement history
return self._refinery.history
def _update_models(self):
"""Perform any extra tasks required to update the models after refinement.
Does nothing here, but used by subclasses"""
pass
[docs] def selection_used_for_refinement(self):
"""Return a selection as a flex.bool in terms of the input reflection
data of those reflections that were used in the final step of
refinement."""
matches = self._refman.get_matches()
selection = flex.bool(len(self._refman.get_indexed()), False)
try: # new reflection table format for matches
isel = matches["iobs"]
selection.set_selected(isel, True)
except TypeError: # old ObsPredMatch format for matches
for m in matches:
selection[m.iobs] = True
return selection
[docs] def predict_for_indexed(self):
"""perform prediction for all the indexed reflections passed into
refinement and additionally set the used_in_refinement flag. Do not
compose the derivatives of states of the model as this is expensive and
they are not needed outside of a refinement run"""
reflections = self.predict_for_reflection_table(
self._refman.get_indexed(), skip_derivatives=True
)
reflections.sort("iobs")
mask = self.selection_used_for_refinement()
reflections.set_flags(mask, reflections.flags.used_in_refinement)
return reflections
[docs] def predict_for_reflection_table(self, reflections, skip_derivatives=False):
"""perform prediction for all reflections in the supplied table"""
# delegate to the target object, which has access to the predictor
return self._target.predict_for_reflection_table(reflections, skip_derivatives)
[docs]class ScanVaryingRefiner(Refiner):
"""Includes functionality to update the models with their states at
scan-points after scan-varying refinement"""
def _update_models(self):
for iexp, exp in enumerate(self._experiments):
ar_range = exp.scan.get_array_range()
obs_image_numbers = list(range(ar_range[0], ar_range[1] + 1))
# write scan-varying s0 vectors back to beam models
s0_list = self._pred_param.get_varying_s0(obs_image_numbers, iexp)
if s0_list is not None:
exp.beam.set_s0_at_scan_points(s0_list)
# write scan-varying setting rotation matrices back to goniometer models
S_list = self._pred_param.get_varying_setting_rotation(
obs_image_numbers, iexp
)
if S_list is not None:
exp.goniometer.set_setting_rotation_at_scan_points(S_list)
# write scan-varying crystal setting matrices back to crystal models
A_list = self._pred_param.get_varying_UB(obs_image_numbers, iexp)
if A_list is not None:
exp.crystal.set_A_at_scan_points(A_list)
# Calculate scan-varying errors if requested
if self._pred_param.set_scan_varying_errors:
# get state covariance matrices the whole range of images. We select
# the first element of this at each image because crystal scan-varying
# parameterisations are not multi-state
state_cov_list = [
self._pred_param.calculate_model_state_uncertainties(
obs_image_number=t, experiment_id=iexp
)
for t in range(ar_range[0], ar_range[1] + 1)
]
if "U_cov" in state_cov_list[0]:
u_cov_list = [e["U_cov"] for e in state_cov_list]
else:
u_cov_list = None
if "B_cov" in state_cov_list[0]:
b_cov_list = [e["B_cov"] for e in state_cov_list]
else:
b_cov_list = None
# return these to the model parameterisations to be set in the models
self._pred_param.set_model_state_uncertainties(
u_cov_list, b_cov_list, iexp
)