
DIALS: 3D integration

James Parkhurst

Design principles (interfaces)
See Graeme Winter’s talk

DXTBX: experimental models

Differences between

observed spot centroids

and predicted Bragg

peaks for 20802 strong

reflections without and

with parallax correction

Models

Beam Direction

Wavelength

Polarization

Goniometer Rotation axis

Scan Image range

Oscillation range

Conversion between image number and angle

Detector Geometry

Trusted regions and pixel values

Supports multiple detector panels

Performs ray intersection with virtual detector plane

Supports complex pixel to millimetre mappings

• Experimental models provide

access to data and methods to

abstract from hardware details

• Designed to be extensible through

decorators

• For example, the detector model is

currently being updated to apply a

parallax correction where

appropriate

DXTBX: sweep interface

In [1]: from dxtbx.imageset import ImageSetFactory

...: from glob import glob

In [2]: # Initialise with list of filenames

...: sweep = ImageSetFactory.new(glob('centroid*.cbf'))[0]

...: print sweep

['centroid_0001.cbf', 'centroid_0002.cbf', 'centroid_0003.cbf',

'centroid_0004.cbf', 'centroid_0005.cbf', 'centroid_0006.cbf',

'centroid_0007.cbf', 'centroid_0008.cbf', 'centroid_0009.cbf']

In [3]: # Access experimental models

...: b = sweep.get_beam()

...: d = sweep.get_detector()

...: g = sweep.get_goniometer()

...: s = sweep.get_scan()

In [4]: # Easy indexing like python lists

...: subsweep = sweep[4:7]

...: print subsweep

['centroid_0005.cbf', 'centroid_0006.cbf', 'centroid_0007.cbf']

In [5]: # Read image data

...: for image in subsweep:

...: print image.all()

(2527, 2463)

(2527, 2463)

(2527, 2463)

In [6]: # Extract 3D volume

...: volume = subsweep.to_array()

...: print volume.all()

(3, 2527, 2463)

• High-level interface to the DXTBX

initial experimental models and

image data. Developed in

collaboration with LBNL and

available in CCTBX.

• Access image data stored across

multiple files (e.g. CBF) or a

single HDF5 file through the same

interface.

• Instantiated by factory function

taking a list of filenames allowing

creation of a list of sweeps or

image-sets.

• Gives access to initial

experimental models.

• Simple access to image data

using python list syntax and slice

notation.

Sweep example

Archiving processed data

• Using HDF5 to save processed data

• Allows good compression (For example ~1.5GB of

processed data was compressed to ~50MB)

• Easy to save properties of individual reflections in

datasets

• Difficult to save many profiles with different sizes

• Currently saving each profile in it’s own dataset (not very

efficient!)

• Currently only saving per reflection information, not

relationships between reflections (i.e. overlaps etc)

Algorithm interfaces

• Algorithms designed to be

interchangeable

• Make use of python facilities to

achieve this

• All top-level algorithms implement a

simple high-level interface

• Separates configuration of algorithm

from calling it

• Can specify internal functionality

using different strategies

class Algorithm(object):

 def __init__(self, **kwargs):
 pass

 def __call__(self, data):
 pass

algorithm = Algorithm(parameter_a=True, parameter_b=False)

result = algorithm(data)

class Algorithm(object):

 def __init__(self, **kwargs):
 self.strategy = kwargs['strategy']

 def __call__(self, data):
 return self.strategy(data)

algorithm = Algorithm(strategy=DoSomething())

result = algorithm(data)

Finding strong spots

• Filter the image with a mean and variance

box filter

• Calculate the index of dispersion for each

pixel (σ2/μ)

• Threshold pixels with (σ2/μ) > 6 standard

deviations greater than the expected

value

• Threshold pixels with value > 3 standard

deviations than the local mean

• Label connected pixels in 3D as belonging

to the same spot

• Discard spots with fewer than 6 pixels

• Discard spots whose centroids differs

from the pixel with the greatest intensity

by more than 2 pixels

Reflection mask

• Calculate shoebox specific to

each reflection using standard

deviation of beam divergence

(σD) and mosaicity (σM) in

reciprocal space

• Extract shoebox profile for

each reflection

• Use a fast collision detection

algorithm to find overlapping

shoeboxes

• Overlapping reflections are

recording in an adjacency list

• pixel ownership is recorded

using a shoebox mask for

each reflection

Background subtraction

Background

intensity value

• Assume enough pixels available (> 10) to calculate background

• Assume background intensity distributed normally

• Remove high intensity pixels, one at a time, until intensity is normally

distributed

• Select mean of remaining pixels as background intensity

• Correct over-estimated background intensity with modeled distribution (in

progress)

Reciprocal space transform

• Forward and reverse coordinate transforms have been implemented.

• Algorithm to transform reflection profile onto reciprocal space grid

has been implemented using pixel sub-division method as in XDS.

• Should be possible to implement more accurate analytical mapping.

0 1 2

3 4 5

6 7 8

• Originally had issues with mis-

centred reflection profiles

• This seems to have been solved by

the use of a parallax correction

(requires testing to verify)

• Is sensitive to subtracted

background. Under-estimated

background intensity can result in

erroneous structure recorded on

transformed grid.

• Work on DXTBX is more or less

complete:

– experimental models

– parallax correction

– high-level sweep interface

• Implemented algorithms for:

– spot finding

– spot prediction

– reflection mask

– background subtraction

– reciprocal space transform

• Next steps:

– Complete and test 3D

summation integration

– Do profile fitting in reciprocal

space

– Rigorously test using different

datasets

– Better calculation of the beam

divergence and mosaicity

– Connect with refinement module

Summary

